|title=Proceedings of the Lebedev Physics Institute |language=Russian |editor=N.G. Basov |publisher=Nauka |lccn=88174540 |volume=187 |pages=202–222 |year=1988 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N }}</ref> 。<math> f [\psi_{n}(\vec r,t) ] </math> 可能是逻辑映射,类似于 <math> \psi \rightarrow G \psi [1 - \tanh (\psi)]</math>或复合映射,例如Julia 集合 <math> f[\psi] = \psi^2</math>或Ikeda映射<math> \psi_{n+1} = A + B \psi_n e^{i (|\psi_n|^2 + C)} </math> 当波的传播距离 <math>L=ct</math>和波长<math>\lambda=2\pi/k</math>认为是核<math>K</math> 可以具有用于格林函数的形式薛定谔方程:<ref name="Okulov, A Yu 2000">{{cite journal |title=Spatial soliton laser: geometry and stability | |title=Proceedings of the Lebedev Physics Institute |language=Russian |editor=N.G. Basov |publisher=Nauka |lccn=88174540 |volume=187 |pages=202–222 |year=1988 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N }}</ref> 。<math> f [\psi_{n}(\vec r,t) ] </math> 可能是逻辑映射,类似于 <math> \psi \rightarrow G \psi [1 - \tanh (\psi)]</math>或复合映射,例如Julia 集合 <math> f[\psi] = \psi^2</math>或Ikeda映射<math> \psi_{n+1} = A + B \psi_n e^{i (|\psi_n|^2 + C)} </math> 当波的传播距离 <math>L=ct</math>和波长<math>\lambda=2\pi/k</math>认为是核<math>K</math> 可以具有用于格林函数的形式薛定谔方程:<ref name="Okulov, A Yu 2000">{{cite journal |title=Spatial soliton laser: geometry and stability |