更改

跳到导航 跳到搜索
删除13字节 、 2020年5月22日 (五) 01:36
第157行: 第157行:  
|title=Proceedings of the Lebedev Physics Institute |language=Russian |editor=N.G. Basov |publisher=Nauka |lccn=88174540 |volume=187  |pages=202–222 |year=1988 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N  }}</ref> 。<math> f [\psi_{n}(\vec r,t) ] </math> 可能是逻辑映射,类似于 <math> \psi \rightarrow G \psi [1 - \tanh (\psi)]</math>或复合映射,例如Julia 集合 <math> f[\psi] = \psi^2</math>或Ikeda映射<math> \psi_{n+1} = A + B \psi_n e^{i (|\psi_n|^2 + C)} </math> 当波的传播距离 <math>L=ct</math>和波长<math>\lambda=2\pi/k</math>认为是核<math>K</math> 可以具有用于格林函数的形式薛定谔方程:<ref name="Okulov, A Yu 2000">{{cite journal |title=Spatial soliton laser: geometry and stability
 
|title=Proceedings of the Lebedev Physics Institute |language=Russian |editor=N.G. Basov |publisher=Nauka |lccn=88174540 |volume=187  |pages=202–222 |year=1988 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N  }}</ref> 。<math> f [\psi_{n}(\vec r,t) ] </math> 可能是逻辑映射,类似于 <math> \psi \rightarrow G \psi [1 - \tanh (\psi)]</math>或复合映射,例如Julia 集合 <math> f[\psi] = \psi^2</math>或Ikeda映射<math> \psi_{n+1} = A + B \psi_n e^{i (|\psi_n|^2 + C)} </math> 当波的传播距离 <math>L=ct</math>和波长<math>\lambda=2\pi/k</math>认为是核<math>K</math> 可以具有用于格林函数的形式薛定谔方程:<ref name="Okulov, A Yu 2000">{{cite journal |title=Spatial soliton laser: geometry and stability
 
|journal=Optics and Spectroscopy|volume=89 |issue=1 |pages=145–147 |year=2000 |last1= Okulov |first1=A Yu|doi=10.1134/BF03356001  |bibcode=2000OptSp..89..131O|url=https://www.semanticscholar.org/paper/0bd2d3e9a6912a188f42b50316f4652c165d1b6b}}</ref>.<ref name="Okulov, A Yu 2020">{{cite journal |title=Structured light entities, chaos and nonlocal maps
 
|journal=Optics and Spectroscopy|volume=89 |issue=1 |pages=145–147 |year=2000 |last1= Okulov |first1=A Yu|doi=10.1134/BF03356001  |bibcode=2000OptSp..89..131O|url=https://www.semanticscholar.org/paper/0bd2d3e9a6912a188f42b50316f4652c165d1b6b}}</ref>.<ref name="Okulov, A Yu 2020">{{cite journal |title=Structured light entities, chaos and nonlocal maps
|journal=Chaos,Solitons&Fractals|volume=133 |issue=4|page=109638 |year=2020|last1=  Okulov |first1=A Yu|doi=10.1016/j.chaos.2020.109638|arxiv=1901.09274}}</ref>
+
|journal=Chaos,Solitons&Fractals|volume=133 |issue=4|page=109638 |year=2020|last1=  Okulov |first1=A Yu|doi=10.1016/j.chaos.2020.109638}}</ref>
       
:<math> K(\vec r - \vec r^{,},L)  = \frac {ik\exp[ikL]}{2\pi L}\exp[\frac {ik|\vec r-\vec r^{,}|^2}{2 L} ]</math>.
 
:<math> K(\vec r - \vec r^{,},L)  = \frac {ik\exp[ikL]}{2\pi L}\exp[\frac {ik|\vec r-\vec r^{,}|^2}{2 L} ]</math>.
 
+
<br>
    
===挺举系统 Jerk systems ===
 
===挺举系统 Jerk systems ===
7,129

个编辑

导航菜单