[[本福德定律]]是 齐普夫定律的一种特殊的有界情形,这两个定律之间的联系,<ref name="Galien">{{cite web |url=http://home.zonnet.nl/galien8/factor/factor.html |title=Factorial randomness: the Laws of Benford and Zipf with respect to the first digit distribution of the factor sequence from the natural numbers |author=Johan Gerard van der Galien |date=2003-11-08 |accessdate=8 July 2016 |archiveurl=https://web.archive.org/web/20070305150334/http://home.zonnet.nl/galien8/factor/factor.html |archivedate=2007-03-05}}</ref> <ref>Ali Eftekhari (2006) Fractal geometry of texts. ''Journal of Quantitative Linguistic'' 13(2-3): 177–193.</ref>就在于它们都起源于统计物理和临界现象的尺度不变函数关系(尺度不变特征)。在[[本福德定律]]中,概率的比率是不固定的。<ref name="Galien"/> <ref>L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani (2001) Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. ''Physica A'' 293: 297–304.</ref> 满足齐普夫定律的前位数 <math>s = 1</math>同样也满足本福特定律。 | [[本福德定律]]是 齐普夫定律的一种特殊的有界情形,这两个定律之间的联系,<ref name="Galien">{{cite web |url=http://home.zonnet.nl/galien8/factor/factor.html |title=Factorial randomness: the Laws of Benford and Zipf with respect to the first digit distribution of the factor sequence from the natural numbers |author=Johan Gerard van der Galien |date=2003-11-08 |accessdate=8 July 2016 |archiveurl=https://web.archive.org/web/20070305150334/http://home.zonnet.nl/galien8/factor/factor.html |archivedate=2007-03-05}}</ref> <ref>Ali Eftekhari (2006) Fractal geometry of texts. ''Journal of Quantitative Linguistic'' 13(2-3): 177–193.</ref>就在于它们都起源于统计物理和临界现象的尺度不变函数关系(尺度不变特征)。在[[本福德定律]]中,概率的比率是不固定的。<ref name="Galien"/> <ref>L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani (2001) Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. ''Physica A'' 293: 297–304.</ref> 满足齐普夫定律的前位数 <math>s = 1</math>同样也满足本福特定律。 |