'''神经复杂性 Neural Complexity'''(Tononi 等,1994) ,与系统的延伸性相关,可以应用于任何经验系统,包括大脑。神经复杂度中的一个重要概念是'''集成度 Integration'''(也称为多信息) ,这是互信息的多元扩展,用于估计任意大系统中的统计结构的总量。集成度被定义为组成部分的个体熵之和与系统作为一个整体的联合熵之差。集成度在多个空间尺度上的分布表明了系统的复杂性。考虑以下三种情况(<figref>Complexity_figure2.jpg</figref>)。(1)具有统计独立成分的系统会呈现全局无序或随机动态。它的联合熵将正好等于组成熵之和,系统的集成度将为零,无论哪个空间尺度的系统被检查。(2)各组分之间的统计相关性将导致系统的联合熵相对于个体熵的收缩,从而导致正的集成度。如果一个系统的组成部分是高度耦合的,并且表现出统计依赖性以及同质动力学(即所有组成部分的行为完全相同) ,那么该系统的多个空间尺度上的集成估计平均遵循线性分布。(3)如果统计依赖关系是非同质的(例如涉及组件、模块或层次模式的分组) ,则集成的分布将偏离线性。偏差的总量是系统的复杂性。随机系统的复杂度为零,而齐次耦合系统的复杂度非常低。具有丰富结构和动态行为的系统具有很高的复杂性。 | '''神经复杂性 Neural Complexity'''(Tononi 等,1994) ,与系统的延伸性相关,可以应用于任何经验系统,包括大脑。神经复杂度中的一个重要概念是'''集成度 Integration'''(也称为多信息) ,这是互信息的多元扩展,用于估计任意大系统中的统计结构的总量。集成度被定义为组成部分的个体熵之和与系统作为一个整体的联合熵之差。集成度在多个空间尺度上的分布表明了系统的复杂性。考虑以下三种情况(<figref>Complexity_figure2.jpg</figref>)。(1)具有统计独立成分的系统会呈现全局无序或随机动态。它的联合熵将正好等于组成熵之和,系统的集成度将为零,无论哪个空间尺度的系统被检查。(2)各组分之间的统计相关性将导致系统的联合熵相对于个体熵的收缩,从而导致正的集成度。如果一个系统的组成部分是高度耦合的,并且表现出统计依赖性以及同质动力学(即所有组成部分的行为完全相同) ,那么该系统的多个空间尺度上的集成估计平均遵循线性分布。(3)如果统计依赖关系是非同质的(例如涉及组件、模块或层次模式的分组) ,则集成的分布将偏离线性。偏差的总量是系统的复杂性。随机系统的复杂度为零,而齐次耦合系统的复杂度非常低。具有丰富结构和动态行为的系统具有很高的复杂性。 |