更改

跳到导航 跳到搜索
删除240字节 、 2021年9月13日 (一) 14:58
第67行: 第67行:  
In [[mathematics]], '''self-affinity''' is a feature of a [[fractal]] whose pieces are [[scaling (geometry)|scaled]] by different amounts in the x- and y-directions. This means that to appreciate the self similarity of these fractal objects, they have to be rescaled using an [[anisotropic]] [[affine transformation]].
 
In [[mathematics]], '''self-affinity''' is a feature of a [[fractal]] whose pieces are [[scaling (geometry)|scaled]] by different amounts in the x- and y-directions. This means that to appreciate the self similarity of these fractal objects, they have to be rescaled using an [[anisotropic]] [[affine transformation]].
   −
In mathematics, self-affinity is a feature of a fractal whose pieces are scaled by different amounts in the x- and y-directions. This means that to appreciate the self similarity of these fractal objects, they have to be rescaled using an anisotropic affine transformation.
+
在数学中,自仿射性是分形的特征之一,分形的各部分在 x 方向和 y 方向上按不同的比例缩放。这意味着要理解这些分形对象的自相似性,必须使用'''Anisotropic Affine Transformation 各向异性仿射变换'''进行缩放。
 
+
==Definition 定义==
在数学中,自仿射性是分形的特征之一,它的各部分在 x 方向和 y 方向上按不同的比例缩放。这意味着,为了了解这些分形物体的自相似性,它们必须使用各向异性仿射变换重新标度。
  −
 
  −
 
  −
 
  −
==Definition==
      
A [[Compact space|compact]] [[topological space]] ''X'' is self-similar if there exists a [[finite set]] ''S'' indexing a set of non-[[surjective]] [[homeomorphism]]s <math>\{ f_s : s\in S \}</math> for which
 
A [[Compact space|compact]] [[topological space]] ''X'' is self-similar if there exists a [[finite set]] ''S'' indexing a set of non-[[surjective]] [[homeomorphism]]s <math>\{ f_s : s\in S \}</math> for which
596

个编辑

导航菜单