a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree. | a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree. |