更改

跳到导航 跳到搜索
删除124字节 、 2022年4月23日 (六) 10:22
无编辑摘要
第8行: 第8行:  
[[Image:KochSnowGif16 800x500 2.gif|thumb|right|250px|当无限放大[[科赫曲线]]时,它会展示出无限重复的自相似性。]]  
 
[[Image:KochSnowGif16 800x500 2.gif|thumb|right|250px|当无限放大[[科赫曲线]]时,它会展示出无限重复的自相似性。]]  
   −
[[File:Standard self-similarity.png|thumb|300px|标准(平凡)自相似性。<ref name=":0">Mandelbrot, Benoit B. (1982). ''The Fractal Geometry of Nature'', p.44. {{ISBN|978-0716711865}}.</ref>]]
+
[[File:Standard self-similarity.png|thumb|300px|标准(平凡)自相似性。<ref name=":0">Mandelbrot, Benoit B. (1982). ''The Fractal Geometry of Nature'', p.44. .</ref>]]
      第21行: 第21行:  
<blockquote>
 
<blockquote>
 
如果一个图形的部分是整体的小尺度复制品,就可以认为这一图形是自相似的;如果图形分解产生的部分都是该图形的精确复制,则这个图形是严格自相似的。任何任意的部分都包含整个图形的精确复制。
 
如果一个图形的部分是整体的小尺度复制品,就可以认为这一图形是自相似的;如果图形分解产生的部分都是该图形的精确复制,则这个图形是严格自相似的。任何任意的部分都包含整个图形的精确复制。
</blockquote><ref>Peitgen, Heinz-Otto; Jürgens, Hartmut; Saupe, Dietmar; Maletsky, Evan; Perciante, Terry; and Yunker, Lee (1991). ''Fractals for the Classroom: Strategic Activities Volume One'', p.21. Springer-Verlag, New York. <nowiki>ISBN 0-387-97346-X</nowiki> and <nowiki>ISBN 3-540-97346-X</nowiki>.</ref>
+
</blockquote><ref>Peitgen, Heinz-Otto; Jürgens, Hartmut; Saupe, Dietmar; Maletsky, Evan; Perciante, Terry; and Yunker, Lee (1991). ''Fractals for the Classroom: Strategic Activities Volume One'', p.21. Springer-Verlag, New York.</ref>
      第67行: 第67行:       −
类似地,人们在描述股票市场时认为其波动具有自仿射性,也就是说,当根据显示的细节程度,通过适当的仿射变换进行转换时,它们显示出自相似性<ref name=":2">Peitgen, et al (1991), p.2-3.</ref>。Andrew Lo描述了计量经济学中股票市场的对数回报自相似性<ref name=":3">Campbell, Lo and MacKinlay (1991)  "[[Econometrics]] of Financial Markets ", Princeton University Press! {{ISBN|978-0691043012}}</ref>。
+
类似地,人们在描述股票市场时认为其波动具有自仿射性,也就是说,当根据显示的细节程度,通过适当的仿射变换进行转换时,它们显示出自相似性<ref name=":2">Peitgen, et al (1991), p.2-3.</ref>。Andrew Lo描述了计量经济学中股票市场的对数回报自相似性<ref name=":3">Campbell, Lo and MacKinlay (1991)  "[[Econometrics]] of Financial Markets ", Princeton University Press!</ref>。
     
7,129

个编辑

导航菜单