更改

跳到导航 跳到搜索
第153行: 第153行:  
## <math>S_m(t) = (W_A^t)^T  S_m(0)</math>, 初始化一个长度为Z+1的分布<math>P_{M|m}(t)</math>, 其中<math>P_{M|m}(t)</math>的前Z个位置的数值等于<math>S_m(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_{M|m}(t)</math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_{M|m}(t) </math>
 
## <math>S_m(t) = (W_A^t)^T  S_m(0)</math>, 初始化一个长度为Z+1的分布<math>P_{M|m}(t)</math>, 其中<math>P_{M|m}(t)</math>的前Z个位置的数值等于<math>S_m(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_{M|m}(t)</math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_{M|m}(t) </math>
 
## <math>S_M(t) = (W_B^t)^T  S_M(0)</math>, 初始化一个长度为Z+1的分布<math>P_M(t) </math>, 其中<math>P_M(t) </math>的前Z个位置的数值等于<math>S_M(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_M(t) </math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_M(t) </math>
 
## <math>S_M(t) = (W_B^t)^T  S_M(0)</math>, 初始化一个长度为Z+1的分布<math>P_M(t) </math>, 其中<math>P_M(t) </math>的前Z个位置的数值等于<math>S_M(t)</math>中对应的Z个没有进行粗粒化的节点位置的值,<math>P_M(t) </math>中的第Z+1位置的数值等于<math>1-\sum_{i=1}^Z p^i_M(t) </math>
# 使用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致, 公式为<math>inconsistency=\sum_{t=1}^T D_{KL}[P_M(t)||P_M(t)]</math>
+
# 使用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性,若结果为零则动力学一致, 公式为:<math>inconsistency=\sum_{t=1}^T D_{KL}[P_{M|m}(t)||P_M(t)]</math>
    
实验发现,针对[[偏好依附网络]]来说,在不同节点规模以及参数下的粗粒化后的宏观网络的不一致性会随着迭代步数的增加都会收敛到0。
 
实验发现,针对[[偏好依附网络]]来说,在不同节点规模以及参数下的粗粒化后的宏观网络的不一致性会随着迭代步数的增加都会收敛到0。
2,464

个编辑

导航菜单