更改

删除364字节 、 2020年7月16日 (四) 19:41
无编辑摘要
第102行: 第102行:       −
This is because a general process for this case may include work being done on the system by its surroundings, which can have frictional or viscous effects inside the system, because a chemical reaction may be in progress, or because heat transfer actually occurs only irreversibly, driven by a finite difference between the system temperature ({{math|''T''}}) and the temperature of the surroundings ({{math|''T''}}<sub>''surr''</sub>).<ref name=":0">Adkins, C.J. (1968/1983), p. 75.</ref><ref name="Munster 45"/> Note that the equality still applies for pure heat flow,<ref name="Schmidt-Rohr 14"> Schmidt-Rohr, K. (2014). "Expansion Work without the External Pressure, and Thermodynamics in Terms of Quasistatic Irreversible Processes" ''J. Chem. Educ.'' '''91''': 402-409.  https://dx.doi.org/10.1021/ed3008704 </ref>
+
This is because a general process for this case may include work being done on the system by its surroundings, which can have frictional or viscous effects inside the system, because a chemical reaction may be in progress, or because heat transfer actually occurs only irreversibly, driven by a finite difference between the system temperature ({{math|''T''}}) and the temperature of the surroundings ({{math|''T''}}<sub>''surr''</sub>).
 +
<ref name=":0">Adkins, C.J. (1968/1983), p. 75.</ref><ref name="Munster 45"/>  
 +
Note that the equality still applies for pure heat flow,
 +
<ref name="Schmidt-Rohr 14"> Schmidt-Rohr, K. (2014). "Expansion Work without the External Pressure, and Thermodynamics in Terms of Quasistatic Irreversible Processes" ''J. Chem. Educ.'' '''91''': 402-409.  https://dx.doi.org/10.1021/ed3008704 </ref>
    
This is because a general process for this case may include work being done on the system by its surroundings, which can have frictional or viscous effects inside the system, because a chemical reaction may be in progress, or because heat transfer actually occurs only irreversibly, driven by a finite difference between the system temperature () and the temperature of the surroundings (<sub>surr</sub>).
 
This is because a general process for this case may include work being done on the system by its surroundings, which can have frictional or viscous effects inside the system, because a chemical reaction may be in progress, or because heat transfer actually occurs only irreversibly, driven by a finite difference between the system temperature () and the temperature of the surroundings (<sub>surr</sub>).
   −
这是因为这种情况下的一般过程可能包括周围环境对系统所做的功,这可能在系统内部产生摩擦或粘滞效应,因为一个化学反应可能正在进行,或者因为热传递实际上只是不可逆地发生,由系统温度()和周围环境温度(sub surr / sub)之间的差分驱动。
         +
这种情况下的一般过程可能包括周围环境对系统所做的功,这是因为在系统内部会产生摩擦或粘滞效应,此时是由于化学反应可能正在进行,或热传递实际上是不可逆地发生,通过系统温度<math>T</math>和周围环境温度<math>T_surr</math>之间存在差异而进行驱动。
         −
: <math>\mathrm dS = \frac{\delta Q}{T} \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(actually possible quasistatic irreversible process without composition change).}</math>
     −
<math>\mathrm dS = \frac{\delta Q}{T} \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(actually possible quasistatic irreversible process without composition change).}</math>
     −
(实际上可能是不改变成分的准静态不可逆性)。数学
+
: <math>\mathrm dS = \frac{\delta Q}{T} \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(actually possible quasistatic irreversible process without composition change 实际上可能是不改变成分的准静态不可逆性).}</math>
 +
 
      第166行: 第168行:       −
==Various statements of the law==
     −
==Various statements of the law==
     −
各种各样的法律陈述
+
==Various statements of the law热力学第二定律的不同表述==
 +
 
 +
 
      第186行: 第188行:       −
===Carnot's principle===
     −
===Carnot's principle===
     −
卡诺原理
+
===Carnot's principle卡诺原理===
 +
 
 +
 
      第259行: 第261行:        +
===Clausius statement克劳修斯表述===
   −
===Clausius statement===
     −
===Clausius statement===
  −
  −
克劳修斯声明
      
The German scientist [[Rudolf Clausius]] laid the foundation for the second law of thermodynamics in 1850 by examining the relation between heat transfer and work.{{sfnp|Clausius|1850}} His formulation of the second law, which was published in German in 1854, is known as the ''Clausius statement'':
 
The German scientist [[Rudolf Clausius]] laid the foundation for the second law of thermodynamics in 1850 by examining the relation between heat transfer and work.{{sfnp|Clausius|1850}} His formulation of the second law, which was published in German in 1854, is known as the ''Clausius statement'':
第302行: 第301行:       −
===Kelvin statements===
+
===Kelvin statements开尔文描述===
   −
===Kelvin statements===
     −
开尔文陈述
      
[[William Thomson, 1st Baron Kelvin|Lord Kelvin]] expressed the second law in several wordings.
 
[[William Thomson, 1st Baron Kelvin|Lord Kelvin]] expressed the second law in several wordings.
第338行: 第335行:       −
===Equivalence of the Clausius and the Kelvin statements===
     −
===Equivalence of the Clausius and the Kelvin statements===
+
===Equivalence of the Clausius and the Kelvin statements克劳修斯和开尔文陈述的等价性===
 +
 
   −
克劳修斯和开尔文陈述的等价性
      
[[Image:Deriving Kelvin Statement from Clausius Statement.svg|thumb|Derive Kelvin Statement from Clausius Statement]]
 
[[Image:Deriving Kelvin Statement from Clausius Statement.svg|thumb|Derive Kelvin Statement from Clausius Statement]]
第360行: 第356行:       −
===Planck's proposition===
     −
===Planck's proposition===
     −
普朗克的命题
+
===Planck's proposition普朗克假设===
 +
 
 +
 
     
579

个编辑