更改

添加11字节 、 2020年8月17日 (一) 13:52
第251行: 第251行:  
The Minkowski dimension is similar to, and at least as large as, the Hausdorff dimension, and they are equal in many situations. However, the set of rational points in [0, 1] has Hausdorff dimension zero and Minkowski dimension one. There are also compact sets for which the Minkowski dimension is strictly larger than the Hausdorff dimension.
 
The Minkowski dimension is similar to, and at least as large as, the Hausdorff dimension, and they are equal in many situations. However, the set of rational points in [0, 1] has Hausdorff dimension zero and Minkowski dimension one. There are also compact sets for which the Minkowski dimension is strictly larger than the Hausdorff dimension.
   −
闵可夫斯基维度与豪斯多夫维数相似,至少和它一样大,而且在许多情况下是相等的。然而,[0,1]中有理点集的豪斯多夫维数为0,Minkowski 维数为1。还有一些紧集的 Minkowski 维数绝对大于豪斯多夫维数。
+
[[闵可夫斯基维数]]与豪斯多夫维数相似,至少和它一样大,而且在许多情况下是相等的。然而,[0,1]中有理点集的豪斯多夫维数为0,闵可夫斯基维数为1。还有一些紧集的闵可夫斯基维数绝对大于豪斯多夫维数。
 
  −
 
      
=== Hausdorff dimensions and Frostman measures 豪斯多夫维度和弗洛斯曼测度===
 
=== Hausdorff dimensions and Frostman measures 豪斯多夫维度和弗洛斯曼测度===
77

个编辑