第267行: |
第267行: |
| If <math>X=\bigcup_{i\in I}X_i</math> is a finite or countable union, then | | If <math>X=\bigcup_{i\in I}X_i</math> is a finite or countable union, then |
| | | |
− | 如果 math x x i / math 是一个有限或可数的联合,则 | + | 如果 <math>X=\bigcup_{i\in I}X_i</math> 是一个有限或可数的联合,则 |
| | | |
| | | |
| | | |
− | :<math> \dim_{\operatorname{Haus}}(X) =\sup_{i\in I} \dim_{\operatorname{Haus}}(X_i).</math>
| + | <math> \dim_{\operatorname{Haus}}(X) =\sup_{i\in I} \dim_{\operatorname{Haus}}(X_i).</math> |
| | | |
| <math> \dim_{\operatorname{Haus}}(X) =\sup_{i\in I} \dim_{\operatorname{Haus}}(X_i).</math> | | <math> \dim_{\operatorname{Haus}}(X) =\sup_{i\in I} \dim_{\operatorname{Haus}}(X_i).</math> |
| | | |
− | (x) sup { i }{ operatorname { Haus }(xi) . / math
| + | |
| | | |
| | | |
第283行: |
第283行: |
| This can be verified directly from the definition. | | This can be verified directly from the definition. |
| | | |
− | 这可以直接从定义中验证。
| + | 这可以直接从定义得到验证。 |
| | | |
| | | |
第291行: |
第291行: |
| If X and Y are non-empty metric spaces, then the Hausdorff dimension of their product satisfies | | If X and Y are non-empty metric spaces, then the Hausdorff dimension of their product satisfies |
| | | |
− | 如果 x 和 y 是非空度量空间,那么它们乘积的豪斯多夫维数满足 | + | 如果 ''X'' 和''Y''是非空度量空间,那么它们乘积的豪斯多夫维数满足 |
| | | |
| | | |
第299行: |
第299行: |
| <math> \dim_{\operatorname{Haus}}(X\times Y)\ge \dim_{\operatorname{Haus}}(X)+ \dim_{\operatorname{Haus}}(Y).</math> | | <math> \dim_{\operatorname{Haus}}(X\times Y)\ge \dim_{\operatorname{Haus}}(X)+ \dim_{\operatorname{Haus}}(Y).</math> |
| | | |
− | (x 乘以 y) ge dim { operatorname { Haus }(x) + dim { operatorname { Haus }(y) . / math
| + | |
| | | |
| | | |
第307行: |
第307行: |
| This inequality can be strict. It is possible to find two sets of dimension 0 whose product has dimension 1. In the opposite direction, it is known that when X and Y are Borel subsets of R<sup>n</sup>, the Hausdorff dimension of X × Y is bounded from above by the Hausdorff dimension of X plus the upper packing dimension of Y. These facts are discussed in Mattila (1995). | | This inequality can be strict. It is possible to find two sets of dimension 0 whose product has dimension 1. In the opposite direction, it is known that when X and Y are Borel subsets of R<sup>n</sup>, the Hausdorff dimension of X × Y is bounded from above by the Hausdorff dimension of X plus the upper packing dimension of Y. These facts are discussed in Mattila (1995). |
| | | |
− | 这种不平等可以是绝对的。有可能找到两个维数为0的集合,其乘积的维数为1。在相反的方向上,我们知道当 x 和 y 是 r sup n / sup 的 Borel 子集时,x y 的豪斯多夫维数从上面以 x 的豪斯多夫维数加上 y 的填充维数为界。Mattila (1995)曾就这些情况进行了讨论。
| + | 这种不平等可以是绝对的。有可能找到两个维数为0的集合,其乘积的维数为1。相反,我们知道当''X''和''Y''是 '''R'''<sup>''n''</sup>的 Borel 子集时, ''X'' × ''Y''的豪斯多夫维数从上面以 ''X''的豪斯多夫维数加上 ''Y''的填充维数为界。Mattila (1995)曾就这些情况进行了讨论。 |
| | | |
| ==Self-similar sets== | | ==Self-similar sets== |