更改

添加36字节 、 2020年11月30日 (一) 22:44
第200行: 第200行:       −
===Finite number of points===
+
===Finite number of points有限点数===
      第208行: 第208行:  
In a discrete-time system, an attractor can take the form of a finite number of points that are visited in sequence. Each of these points is called a periodic point. This is illustrated by the logistic map, which depending on its specific parameter value can have an attractor consisting of 2<sup>n</sup> points, 3×2<sup>n</sup> points, etc., for any value of n.
 
In a discrete-time system, an attractor can take the form of a finite number of points that are visited in sequence. Each of these points is called a periodic point. This is illustrated by the logistic map, which depending on its specific parameter value can have an attractor consisting of 2<sup>n</sup> points, 3×2<sup>n</sup> points, etc., for any value of n.
   −
在一个离散时间系统中,一个吸引子可以采取有限数目的点的形式,这些点按顺序访问。这些点中的每一个都称为周期点。这可以用 logistic 映射来说明,对于 n 的任意值,根据其特定的参数值,可以有一个由2个 < sup > n </sup > 点、3 × 2 < sup > n </sup > 点等组成的吸引子。
+
在一个[[离散和连续时间|离散时间]]系统中,<font color="#ff8000"> 吸引子</font>可以以有限数量的点的形式依次访问。每个点都称为[[周期点]]。[[逻辑图]]说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的<font color="#ff8000"> 吸引子</font>。
 
  −
 
      
=== Limit cycle ===
 
=== Limit cycle ===
561

个编辑