更改

添加2字节 、 2020年12月18日 (五) 19:23
无编辑摘要
第23行: 第23行:  
A so-called logically-reversible computation, in which no information is erased, may in principle be carried out without releasing any heat.  This has led to considerable interest in the study of reversible computing. Indeed, without reversible computing, increases in the number of computations-per-joule-of-energy-dissipated must come to a halt by about 2050: because the limit implied by Landauer's principle will be reached by then, according to Koomey's law.  
 
A so-called logically-reversible computation, in which no information is erased, may in principle be carried out without releasing any heat.  This has led to considerable interest in the study of reversible computing. Indeed, without reversible computing, increases in the number of computations-per-joule-of-energy-dissipated must come to a halt by about 2050: because the limit implied by Landauer's principle will be reached by then, according to Koomey's law.  
   −
所谓逻辑上可逆的计算,即不擦除任何信息,原则上可以在不释放任何热量的情况下进行。 这引起了人们对'''<font color="#ff8000"> 可逆计算 reversible computing </font>'''研究的极大兴趣。事实上,如果没有可逆计算,到2050年左右,每单位能量消耗的计算量的增加必须停止:因为根据'''<font color="#ff8000"> 库米定律Koomey's law </font>''',届时将达到兰道尔原理所暗示的极限。
+
所谓逻辑上可逆的计算,即不擦除任何信息,原则上可以在不释放任何热量的情况下进行。 这引起了人们对'''<font color="#ff8000"> 可逆计算 reversible computing </font>'''研究的极大兴趣。事实上,如果没有可逆计算,到2050年左右,每单位能量消耗的计算量的增加必须停止:因为根据'''<font color="#ff8000"> 库米定律 Koomey's law </font>''',届时将达到兰道尔原理所暗示的极限。
      第115行: 第115行:  
Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the Landauer limit:
 
Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the Landauer limit:
   −
兰道尔原理断言,擦除单位信息所需的能量是最小的,也就是著名的兰道尔极限。
+
兰道尔原理断言,擦除单位信息所需的能量是最小的,也就是著名的兰道尔极限:
      第141行: 第141行:       −
==Challenges==
+
==Challenges 挑战==
挑战
+
 
    
The principle is widely accepted as [[physical law]], but in recent years it has been challenged for using [[circular reasoning]] and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000)<ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref> and Norton (2004,<ref name="norton">[http://philsci-archive.pitt.edu/archive/00001729/ Eaters of the Lotus] Critique by John Norton (2004)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011)</ref>), and defended by Bennett (2003),<ref name="bennett" /> Ladyman et al. (2007),<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref> and by Jordan and Manikandan (2019).<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>
 
The principle is widely accepted as [[physical law]], but in recent years it has been challenged for using [[circular reasoning]] and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000)<ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref> and Norton (2004,<ref name="norton">[http://philsci-archive.pitt.edu/archive/00001729/ Eaters of the Lotus] Critique by John Norton (2004)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011)</ref>), and defended by Bennett (2003),<ref name="bennett" /> Ladyman et al. (2007),<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref> and by Jordan and Manikandan (2019).<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>
25

个编辑