| Traditionally, complex systems have been analyzed using tools from nonlinear dynamics and statistical information theory. Recently, the analytical framework of complex networks has led to a significant reappraisal of commonalities and differences between complex systems found in different scientific domains (Amaral and Ottino, 2004). A key insight is that network topology, the graph structure of the interactions, places important constraints on the system's dynamics, by directing information flow, creating patterns of coherence between components, and by shaping the emergence of macroscopic system states. Complexity is highly sensitive to changes in network topology (Sporns et al., 2000). Changes in connection patterns or strengths may thus serve as modulators of complexity. The link between network structure and dynamics represents one of the most promising areas of complexity research in the near future. | | Traditionally, complex systems have been analyzed using tools from nonlinear dynamics and statistical information theory. Recently, the analytical framework of complex networks has led to a significant reappraisal of commonalities and differences between complex systems found in different scientific domains (Amaral and Ottino, 2004). A key insight is that network topology, the graph structure of the interactions, places important constraints on the system's dynamics, by directing information flow, creating patterns of coherence between components, and by shaping the emergence of macroscopic system states. Complexity is highly sensitive to changes in network topology (Sporns et al., 2000). Changes in connection patterns or strengths may thus serve as modulators of complexity. The link between network structure and dynamics represents one of the most promising areas of complexity research in the near future. |