更改

删除94字节 、 2021年9月15日 (三) 20:41
无编辑摘要
第96行: 第96行:  
a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree.
 
a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree.
   −
一个自相似的结构。同胚可以迭代,产生迭代函数系统。函数的组合创建了 monoid 的代数结构。当集合 s 只有两个元素时,这个幺半群称为二元幺半群。二元幺半群可以被视为一棵无限的二叉树,更一般地说,如果集合 s 有 p 个元素,那么幺半群可以被表示为一棵 p-adic 树。
+
一个自相似的结构。同胚可以迭代,产生迭代函数系统。函数的组合产生了幺半群的代数结构。当集合S只有两个元素时,幺半群此时称为二元幺半群。二元幺半群可以表示为无限二叉树;更一般地说,如果集合S有p个元素,则一元类可以表示为p进树。
    
The [[automorphism]]s of the dyadic monoid is the [[modular group]]; the automorphisms can be pictured as [[Hyperbolic coordinates|hyperbolic rotation]]s of the binary tree.
 
The [[automorphism]]s of the dyadic monoid is the [[modular group]]; the automorphisms can be pictured as [[Hyperbolic coordinates|hyperbolic rotation]]s of the binary tree.
第106行: 第106行:  
A more general notion than self-similarity is [[Self-affinity]].
 
A more general notion than self-similarity is [[Self-affinity]].
   −
A more general notion than self-similarity is Self-affinity.
+
比自相似性更一般的概念是自仿射性。
 
  −
比自相似性更一般的概念是自相似性。
  −
 
  −
 
      
==Examples==
 
==Examples==
596

个编辑