更改

删除4字节 、 2022年4月13日 (三) 15:09
无编辑摘要
第23行: 第23行:  
神经形态工程是以生物学、物理学、数学、计算机科学和电子工程为基础,设计人工神经系统,如视觉系统、头眼系统、听觉处理器和自主机器人的一门交叉学科。它是由卡弗 · 米德在20世纪80年代后期开发的。
 
神经形态工程是以生物学、物理学、数学、计算机科学和电子工程为基础,设计人工神经系统,如视觉系统、头眼系统、听觉处理器和自主机器人的一门交叉学科。它是由卡弗 · 米德在20世纪80年代后期开发的。
   −
== Neurological inspiration ==
+
== Neurological inspiration==
 
Neuromorphic engineering is set apart by the inspiration it takes from what we know about the structure and operations of the [[brain]]. Neuromorphic engineering translates what we know about the brain's function into computer systems. Work has mostly focused on replicating the analog nature of [[biological computation]] and the role of [[neuron]]s in [[cognition]].
 
Neuromorphic engineering is set apart by the inspiration it takes from what we know about the structure and operations of the [[brain]]. Neuromorphic engineering translates what we know about the brain's function into computer systems. Work has mostly focused on replicating the analog nature of [[biological computation]] and the role of [[neuron]]s in [[cognition]].
   第42行: 第42行:  
神经形态计算的目标不是完美地模拟大脑及其所有功能,而是提取已知的大脑结构和操作,用于实际的计算系统。没有哪个神经形态学系统会声称或试图复制神经元和突触的每一个元素,但所有人都坚持这样的观点,即计算是高度分布在一系列类似于神经元的小型计算元素中的。虽然这种情绪是标准的,但研究人员用不同的方法追求这一目标。
 
神经形态计算的目标不是完美地模拟大脑及其所有功能,而是提取已知的大脑结构和操作,用于实际的计算系统。没有哪个神经形态学系统会声称或试图复制神经元和突触的每一个元素,但所有人都坚持这样的观点,即计算是高度分布在一系列类似于神经元的小型计算元素中的。虽然这种情绪是标准的,但研究人员用不同的方法追求这一目标。
   −
== Examples==
+
==Examples==
 
As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref>{{Cite book|title = A field programmable neural array|last1 = Farquhar|first1 = Ethan|date = May 2006|journal = IEEE International Symposium on Circuits and Systems|pages = 4114–4117|last2 = Hasler|first2 = Paul.|doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
 
As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref>{{Cite book|title = A field programmable neural array|last1 = Farquhar|first1 = Ethan|date = May 2006|journal = IEEE International Symposium on Circuits and Systems|pages = 4114–4117|last2 = Hasler|first2 = Paul.|doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
   第118行: 第118行:  
= = = 神经形态传感器 = = = 神经形态系统的概念可以扩展到传感器(而不仅仅是计算)。用于检测光线的一个例子是视网膜变形传感器,或者在阵列中使用的事件摄像机。
 
= = = 神经形态传感器 = = = 神经形态系统的概念可以扩展到传感器(而不仅仅是计算)。用于检测光线的一个例子是视网膜变形传感器,或者在阵列中使用的事件摄像机。
   −
==Ethical considerations ==
+
==Ethical considerations==
 
While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to [[human-like machines]] and [[artificial intelligence]] in general. However, the fact that neuromorphic systems are designed to mimic a [[human brain]] gives rise to unique ethical questions surrounding their usage.
 
While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to [[human-like machines]] and [[artificial intelligence]] in general. However, the fact that neuromorphic systems are designed to mimic a [[human brain]] gives rise to unique ethical questions surrounding their usage.
   第131行: 第131行:  
然而,实际上的争论是,神经形态硬件和人工“神经网络”是大脑如何运作或处理信息的极其简化的模型,在大小和功能技术方面的复杂性要低得多,在连接方面的结构则更加规则。将神经形态芯片与大脑进行比较是一种非常粗糙的比较,类似于仅仅因为一架飞机有翅膀和一条尾巴就将它与一只鸟进行比较。事实上,神经认知系统比当前最先进的人工智能具有更多的能量和计算效率,而神经形态工程是一种通过从大脑机制中激发灵感来缩小这种差距的尝试,就像许多工程设计具有生物启发的特征一样。数量级。
 
然而,实际上的争论是,神经形态硬件和人工“神经网络”是大脑如何运作或处理信息的极其简化的模型,在大小和功能技术方面的复杂性要低得多,在连接方面的结构则更加规则。将神经形态芯片与大脑进行比较是一种非常粗糙的比较,类似于仅仅因为一架飞机有翅膀和一条尾巴就将它与一只鸟进行比较。事实上,神经认知系统比当前最先进的人工智能具有更多的能量和计算效率,而神经形态工程是一种通过从大脑机制中激发灵感来缩小这种差距的尝试,就像许多工程设计具有生物启发的特征一样。数量级。
   −
=== Democratic concerns===
+
===Democratic concerns===
 
Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref>{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030|author=2015 Study Panel|date=September 2016|work=One Hundred Year Study on Artificial Intelligence (AI100)|publisher=Stanford University}}</ref> Special [[Eurobarometer]] 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of [[European Union]] citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably “human.” The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.<ref name=":1">{{Cite web|url=http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf|title=Special Eurobarometer 382: Public Attitudes Towards Robots|last=European Commission|date=September 2012|website=European Commission}}</ref>
 
Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref>{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030|author=2015 Study Panel|date=September 2016|work=One Hundred Year Study on Artificial Intelligence (AI100)|publisher=Stanford University}}</ref> Special [[Eurobarometer]] 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of [[European Union]] citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably “human.” The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.<ref name=":1">{{Cite web|url=http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf|title=Special Eurobarometer 382: Public Attitudes Towards Robots|last=European Commission|date=September 2012|website=European Commission}}</ref>
   第158行: 第158行:  
军民两用联合人工智能中心是美国军队的一个分支,专门从事采购和实施用于战斗的人工智能软件和神经形态硬件。具体应用包括智能耳机/护目镜和机器人。JAIC 打算严重依赖神经形态技术来连接神经形态单位网络中的“每个战士每个射手”。
 
军民两用联合人工智能中心是美国军队的一个分支,专门从事采购和实施用于战斗的人工智能软件和神经形态硬件。具体应用包括智能耳机/护目镜和机器人。JAIC 打算严重依赖神经形态技术来连接神经形态单位网络中的“每个战士每个射手”。
   −
==Legal considerations==
+
== Legal considerations==
 
Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref>
 
Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref>
   第172行: 第172行:  
= = = 所有权和财产权 = = = 围绕财产权和人工智能有着重大的法律争论。在 Acohs Pty Ltd 诉 Ucorp Pty Ltd 一案中,澳大利亚联邦法院的克里斯托弗 · 杰瑟普法官发现,材料安全数据表的源代码不能受版权保护,因为它是由软件界面而不是人工作者生成的。同样的问题可能也适用于神经形态系统: 如果一个神经形态系统成功地模仿了人类的大脑并产生了一部原创作品,那么谁,如果有人,应该声称拥有这部作品的所有权?
 
= = = 所有权和财产权 = = = 围绕财产权和人工智能有着重大的法律争论。在 Acohs Pty Ltd 诉 Ucorp Pty Ltd 一案中,澳大利亚联邦法院的克里斯托弗 · 杰瑟普法官发现,材料安全数据表的源代码不能受版权保护,因为它是由软件界面而不是人工作者生成的。同样的问题可能也适用于神经形态系统: 如果一个神经形态系统成功地模仿了人类的大脑并产生了一部原创作品,那么谁,如果有人,应该声称拥有这部作品的所有权?
   −
== Neuromemristive systems==
+
==Neuromemristive systems==
 
Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref>
 
Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref>
   第195行: 第195行:  
:\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
 
:\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
   −
: \frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
+
:\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
    
as a function of the properties of the physical memristive network and the external sources. In the equation above, <math>\alpha</math> is the "forgetting" time scale constant, <math> \xi=r-1</math> and <math>r=\frac{R_\text{off}}{R_\text{on}}</math> is the ratio of ''off'' and ''on'' values of the limit resistances of the memristors, <math> \vec S </math> is the vector of the sources of the circuit and <math>\Omega</math> is a projector on the fundamental loops of the circuit. The constant <math>\beta</math> has the dimension of a voltage and is associated to the properties of the [[memristor]]; its physical origin is the charge mobility in the conductor. The diagonal matrix and vector <math>W=\operatorname{diag}(\vec W)</math> and <math>\vec W</math> respectively, are instead the internal value of the memristors, with values between 0 and 1. This equation thus requires adding extra constraints on the memory values in order to be reliable.
 
as a function of the properties of the physical memristive network and the external sources. In the equation above, <math>\alpha</math> is the "forgetting" time scale constant, <math> \xi=r-1</math> and <math>r=\frac{R_\text{off}}{R_\text{on}}</math> is the ratio of ''off'' and ''on'' values of the limit resistances of the memristors, <math> \vec S </math> is the vector of the sources of the circuit and <math>\Omega</math> is a projector on the fundamental loops of the circuit. The constant <math>\beta</math> has the dimension of a voltage and is associated to the properties of the [[memristor]]; its physical origin is the charge mobility in the conductor. The diagonal matrix and vector <math>W=\operatorname{diag}(\vec W)</math> and <math>\vec W</math> respectively, are instead the internal value of the memristors, with values between 0 and 1. This equation thus requires adding extra constraints on the memory values in order to be reliable.
第203行: 第203行:  
<nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki>
 
<nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki>
   −
== See also==
+
==See also==
 
{{Columns-list|colwidth=18em|
 
{{Columns-list|colwidth=18em|
 
* [[AI accelerator (computer hardware)|AI accelerator]]
 
* [[AI accelerator (computer hardware)|AI accelerator]]
第226行: 第226行:  
{{Portal bar|Electronics}}
 
{{Portal bar|Electronics}}
   −
==References==
+
== References==
 
{{Reflist|40em}}
 
{{Reflist|40em}}
   第266行: 第266行:  
*CapoCaccia 认知神经形态工程工作室
 
*CapoCaccia 认知神经形态工程工作室
 
*神经形态工程研究所
 
*神经形态工程研究所
*INE 新闻站点。
+
* INE 新闻站点。
 
*《神经形态工程学前沿》
 
*《神经形态工程学前沿》
*加州理工学院计算与神经系统系。
+
* 加州理工学院计算与神经系统系。
* 人脑项目官方网站
+
*人脑项目官方网站
 
*打造硅脑: 基于生物神经元的计算机芯片可能有助于模拟更大、更复杂的大脑模型。2019年5月1日。SANDEEP RAVINDRAN
 
*打造硅脑: 基于生物神经元的计算机芯片可能有助于模拟更大、更复杂的大脑模型。2019年5月1日。SANDEEP RAVINDRAN
  
43

个编辑