更改

删除456字节 、 2022年4月13日 (三) 16:28
第31行: 第31行:  
神经元及其'''<font color="#ff8000">突触Synapse</font>'''的生理学过程极其复杂,难以进行人工模拟。神经元在所有处理过程中都使用化学模拟信号,这是大脑的一个关键生理学特征。这个特征大大增加了在计算机中复制大脑的难度,因为目前的计算机是完全数字化的。然而,部分特征可以抽象为数学函数,这些函数能够紧密捕捉神经元运行的本质。
 
神经元及其'''<font color="#ff8000">突触Synapse</font>'''的生理学过程极其复杂,难以进行人工模拟。神经元在所有处理过程中都使用化学模拟信号,这是大脑的一个关键生理学特征。这个特征大大增加了在计算机中复制大脑的难度,因为目前的计算机是完全数字化的。然而,部分特征可以抽象为数学函数,这些函数能够紧密捕捉神经元运行的本质。
   −
The goal of neuromorphic computing is not to perfectly mimic the brain and all of its functions, but instead to extract what is known of its structure and operations to be used in a practical computing system. No neuromorphic system will claim nor attempt to reproduce every element of neurons and synapses, but all adhere to the idea that computation is highly [[distributed processing|distributed]] throughout a series of small computing elements analogous to a neuron. While this sentiment is standard, researchers chase this goal with different methods.<ref>{{Cite journal | doi = 10.1088/1741-2560/13/5/051001| title = Large-scale neuromorphic computing systems| journal = Journal of Neural Engineering| volume = 13| pages = 1–15| year = 2016| last1 = Furber | first1 = Steve| issue = 5| pmid = 27529195| bibcode = 2016JNEng..13e1001F| doi-access = free}}</ref>
+
The goal of neuromorphic computing is not to perfectly mimic the brain and all of its functions, but instead to extract what is known of its structure and operations to be used in a practical computing system. No neuromorphic system will claim nor attempt to reproduce every element of neurons and synapses, but all adhere to the idea that computation is highly [[distributed processing|distributed]] throughout a series of small computing elements analogous to a neuron. While this sentiment is standard, researchers chase this goal with different methods.<ref name=":11">{{Cite journal | doi = 10.1088/1741-2560/13/5/051001| title = Large-scale neuromorphic computing systems| journal = Journal of Neural Engineering| volume = 13| pages = 1–15| year = 2016| last1 = Furber | first1 = Steve| issue = 5| pmid = 27529195| bibcode = 2016JNEng..13e1001F| doi-access = free}}</ref>
   −
The goal of neuromorphic computing is not to perfectly mimic the brain and all of its functions, but instead to extract what is known of its structure and operations to be used in a practical computing system. No neuromorphic system will claim nor attempt to reproduce every element of neurons and synapses, but all adhere to the idea that computation is highly distributed throughout a series of small computing elements analogous to a neuron. While this sentiment is standard, researchers chase this goal with different methods.
+
神经形态计算的目标不是完美地模拟大脑及其所有功能,而是利用已知的大脑结构和运转机制来研发或优化实际的计算系统。任何神经形态学系统都不会声称或试图复制神经元和突触中的每一个元素,但所有人都一致认可将计算高度'''<font color="#ff8000">分散Distribute</font>'''于一系列类似于神经元的小型计算元素的理念。研究人员用不同的方法来追求这一普遍目标。<ref name=":11" />
 
  −
神经形态计算的目标不是完美地模拟大脑及其所有功能,而是利用已知的大脑结构和运转机制来研发或优化实际的计算系统。任何神经形态学系统都不会声称或试图复制神经元和突触中的每一个元素,但所有人都一致认可将计算高度分散于一系列类似于神经元的小型计算元素的理念。研究人员用不同的方法来追求这一普遍目标。
         
==Examples==
 
==Examples==
==案例 ==
+
==案例==
 
As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref>{{Cite book|title = A field programmable neural array|last1 = Farquhar|first1 = Ethan|date = May 2006|journal = IEEE International Symposium on Circuits and Systems|pages = 4114–4117|last2 = Hasler|first2 = Paul.|doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
 
As early as 2006, researchers at [[Georgia Tech]] published a field programmable neural array.<ref>{{Cite book|title = A field programmable neural array|last1 = Farquhar|first1 = Ethan|date = May 2006|journal = IEEE International Symposium on Circuits and Systems|pages = 4114–4117|last2 = Hasler|first2 = Paul.|doi = 10.1109/ISCAS.2006.1693534|isbn = 978-0-7803-9389-9|s2cid = 206966013}}</ref> This chip was the first in a line of increasingly complex arrays of floating gate transistors that allowed programmability of charge on the gates of [[MOSFET]]s to model the channel-ion characteristics of neurons in the brain and was one of the first cases of a silicon programmable array of neurons.
   第116行: 第114行:  
神经形态系统的概念可以扩展到传感器(而不仅仅是计算)。用于检测光线的一个例子是视网膜变形传感器,或者在阵列中使用的事件摄像机。
 
神经形态系统的概念可以扩展到传感器(而不仅仅是计算)。用于检测光线的一个例子是视网膜变形传感器,或者在阵列中使用的事件摄像机。
   −
==Ethical considerations ==
+
== Ethical considerations==
 
==伦理问题==
 
==伦理问题==
 
While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to [[human-like machines]] and [[artificial intelligence]] in general. However, the fact that neuromorphic systems are designed to mimic a [[human brain]] gives rise to unique ethical questions surrounding their usage.
 
While the interdisciplinary concept of neuromorphic engineering is relatively new, many of the same ethical considerations apply to neuromorphic systems as apply to [[human-like machines]] and [[artificial intelligence]] in general. However, the fact that neuromorphic systems are designed to mimic a [[human brain]] gives rise to unique ethical questions surrounding their usage.
第161行: 第159行:     
==Legal considerations==
 
==Legal considerations==
==法律问题==
+
== 法律问题 ==
 
Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref>
 
Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref>
   第176行: 第174行:  
围绕财产权和人工智能有着重大的法律争论。在 Acohs Pty Ltd 诉 Ucorp Pty Ltd 一案中,澳大利亚联邦法院的克里斯托弗 · 杰瑟普法官发现,材料安全数据表的源代码不能受版权保护,因为它是由软件界面而不是人工作者生成的。同样的问题可能也适用于神经形态系统: 如果一个神经形态系统成功地模仿了人类的大脑并产生了一部原创作品,那么谁,如果有人,应该声称拥有这部作品的所有权?
 
围绕财产权和人工智能有着重大的法律争论。在 Acohs Pty Ltd 诉 Ucorp Pty Ltd 一案中,澳大利亚联邦法院的克里斯托弗 · 杰瑟普法官发现,材料安全数据表的源代码不能受版权保护,因为它是由软件界面而不是人工作者生成的。同样的问题可能也适用于神经形态系统: 如果一个神经形态系统成功地模仿了人类的大脑并产生了一部原创作品,那么谁,如果有人,应该声称拥有这部作品的所有权?
   −
== Neuromemristive systems==
+
==Neuromemristive systems==
 
==神经记忆电阻系统==
 
==神经记忆电阻系统==
 
Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref>
 
Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref>
第198行: 第196行:  
:<math> \frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S </math>
 
:<math> \frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S </math>
   −
: \frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
+
:\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
    
:\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
 
:\frac{d}{dt} \vec{W} = \alpha \vec{W}-\frac{1}{\beta} (I+\xi \Omega W)^{-1} \Omega \vec S
第208行: 第206行:  
<nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki>
 
<nowiki>作为物理记忆网络和外部源的性质的函数。在上述方程中,α 是“遗忘”时间尺度常数,xi = r-1,r = frac { r _ text { off }{ on }{ r _ text { on }}是记忆电阻器极限电阻的开关和开关值之比,vec s 是电路源的矢量,Omega 是电路基本环路的投影仪。常数 β 具有电压的尺寸,与记忆电阻器的特性有关; 它的物理起源是导体中的电荷迁移率。对角矩阵和向量 w = 操作者名{ diag }(vec w)和 vec w 分别是记忆电阻器的内值,值在0到1之间。因此,这个等式需要在内存值上添加额外的约束,以保证可靠性。</nowiki>
   −
==See also==
+
==See also ==
 
==相关词条==
 
==相关词条==
 
{{Columns-list|colwidth=18em|
 
{{Columns-list|colwidth=18em|
第269行: 第267行:     
=<nowiki>外部链接</nowiki>=  
 
=<nowiki>外部链接</nowiki>=  
*碲化物神经形态工程工作室
+
* 碲化物神经形态工程工作室
 
*CapoCaccia 认知神经形态工程工作室
 
*CapoCaccia 认知神经形态工程工作室
*神经形态工程研究所
+
* 神经形态工程研究所
 
*INE 新闻站点。
 
*INE 新闻站点。
 
*《神经形态工程学前沿》
 
*《神经形态工程学前沿》
43

个编辑