更改

添加5,606字节 、 2022年6月18日 (六) 17:56
无编辑摘要
第1行: 第1行:  
Short-term plasticity (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]), also called dynamical synapses, refers to a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). STD is caused by depletion of neurotransmitters consumed during the synaptic signaling process at the axon terminal of a pre-synaptic neuron, whereas STF is caused by influx of calcium into the axon terminal after spike generation, which increases the release probability of neurotransmitters. STP has been found in various cortical regions and exhibits great diversity in properties ([[#Markram98|Markram 98]], [[#Dittman00|Dittman 00]], [[#Wang06|Wang 06]]). Synapses in different cortical areas can have varied forms of plasticity, being either STD-dominated, STF-dominated, or showing a mixture of both forms.
 
Short-term plasticity (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]), also called dynamical synapses, refers to a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). STD is caused by depletion of neurotransmitters consumed during the synaptic signaling process at the axon terminal of a pre-synaptic neuron, whereas STF is caused by influx of calcium into the axon terminal after spike generation, which increases the release probability of neurotransmitters. STP has been found in various cortical regions and exhibits great diversity in properties ([[#Markram98|Markram 98]], [[#Dittman00|Dittman 00]], [[#Wang06|Wang 06]]). Synapses in different cortical areas can have varied forms of plasticity, being either STD-dominated, STF-dominated, or showing a mixture of both forms.
   −
短期可塑性 (STP) (Stevens 95, Markram 96, Abbott 97, Zucker 02, Abbott 04),也称为动态突触,是指突触功效随时间以反映突触前活动历史的方式变化的现象 . 在实验中观察到两种对突触功效具有相反影响的 STP。 它们被称为短期抑郁症(STD)和短期促进(STF)。 STD 是由突触前神经元轴突末端的突触信号传导过程中消耗的神经递质消耗引起的,而 STF 是由尖峰产生后钙流入轴突末端引起的,这增加了神经递质的释放概率。 STP 已在不同的皮层区域发现并表现出极大的多样性(Markram 98、Dittman 00、Wang 06)。 不同皮层区域的突触可以具有不同形式的可塑性,要么以 STD 为主,要么以 STF 为主,或显示两种形式的混合。
+
短期可塑性 (STP) ([[#Stevens95|Stevens 95]], [[#Markram96|Markram 96]], [[#Abbott97|Abbott 97]], [[#Zucker02|Zucker 02]], [[#Abbott04|Abbott 04]]),也称为动态突触,是指突触功效随时间以反映突触前活动历史的方式变化的现象 . 在实验中观察到两种对突触功效具有相反影响的 STP。 它们被称为短期抑郁症(STD)和短期促进(STF)。 STD 是由突触前神经元轴突末端的突触信号传导过程中消耗的神经递质消耗引起的,而 STF 是由尖峰产生后钙流入轴突末端引起的,这增加了神经递质的释放概率。 STP 已在不同的皮层区域发现并表现出极大的多样性(Markram 98、Dittman 00、Wang 06)。 不同皮层区域的突触可以具有不同形式的可塑性,要么以 STD 为主,要么以 STF 为主,或显示两种形式的混合。
    
Compared with long-term plasticity ([[#Bi01|Bi 01]]), which is hypothesized as the neural substrate for experience-dependent modification of neural circuit, STP has a shorter time scale, typically on the order of hundreds to thousands of milliseconds.  The modification it induces to synaptic efficacy is temporary.  Without continued presynaptic activity, the synaptic efficacy will quickly return to its baseline level.
 
Compared with long-term plasticity ([[#Bi01|Bi 01]]), which is hypothesized as the neural substrate for experience-dependent modification of neural circuit, STP has a shorter time scale, typically on the order of hundreds to thousands of milliseconds.  The modification it induces to synaptic efficacy is temporary.  Without continued presynaptic activity, the synaptic efficacy will quickly return to its baseline level.
第15行: 第15行:     
The biophysical processes underlying STP are complex. Studies of the computational roles of STP have relied on the creation of simplified phenomenological models ([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]]).
 
The biophysical processes underlying STP are complex. Studies of the computational roles of STP have relied on the creation of simplified phenomenological models ([[#Abbott97|Abbott 97]],[[#Markram98|Markram 98]],[[#Tsodyks98|Tsodyks 98]]).
 +
 +
STP 背后的生物物理过程很复杂。 对 STP 计算作用的研究依赖于创建简化的现象学模型(Abbott 97、Markram 98、Tsodyks 98)。
    
In the model proposed by Tsodyks and Markram ([[#Tsodyks98|Tsodyks 98]]), the STD effect is modeled by a normalized variable <math>x</math> (<math>0\leq x \leq1</math>), denoting the fraction of resources that remain available after neurotransmitter depletion. The STF effect is modeled by a utilization parameter <math>u</math>, representing the fraction of available resources ready for use (release probability). Following a spike, (i) <math>u</math> increases due to spike-induced calcium influx to the presynaptic terminal, after which (ii) a fraction <math>u</math> of available resources is consumed to produce the post-synaptic current. Between spikes, <math>u</math> decays back to zero with time constant <math>\tau_f</math> and <math>x</math> recovers to 1 with time constant <math>\tau_d </math>. In summary, the dynamics of STP is given by
 
In the model proposed by Tsodyks and Markram ([[#Tsodyks98|Tsodyks 98]]), the STD effect is modeled by a normalized variable <math>x</math> (<math>0\leq x \leq1</math>), denoting the fraction of resources that remain available after neurotransmitter depletion. The STF effect is modeled by a utilization parameter <math>u</math>, representing the fraction of available resources ready for use (release probability). Following a spike, (i) <math>u</math> increases due to spike-induced calcium influx to the presynaptic terminal, after which (ii) a fraction <math>u</math> of available resources is consumed to produce the post-synaptic current. Between spikes, <math>u</math> decays back to zero with time constant <math>\tau_f</math> and <math>x</math> recovers to 1 with time constant <math>\tau_d </math>. In summary, the dynamics of STP is given by
 +
 +
在 Tsodyks 和 Markram (Tsodyks 98) 提出的模型中,STD 效应由归一化变量 [math]\displaystyle{ x }[/math] ([math]\displaystyle{ 0\leq x \leq1 }[/ 数学]),表示在神经递质耗尽后仍然可用的资源比例。 STF 效应由利用率参数 [math]\displaystyle{ u }[/math] 建模,表示可供使用的可用资源的比例(释放概率)。 在一个尖峰之后,(i) [math]\displaystyle{ u }[/math] 由于尖峰诱导的钙流入突触前末端而增加,之后 (ii) 一小部分 [math]\displaystyle{ u }[/math ] 的可用资源被消耗以产生突触后电流。 在尖峰之间,[math]\displaystyle{ u }[/math] 衰减回零,时间常数为 [math]\displaystyle{ \tau_f }[/math] 和 [math]\displaystyle{ x }[/math] 恢复到 1 具有时间常数 [math]\displaystyle{ \tau_d }[/math]。 总之,STP 的动态由下式给出
    
:<math>\begin{aligned}
 
:<math>\begin{aligned}
第24行: 第28行:     
where <math>t_{sp}</math> denotes the spike time and <math>U</math> is the increment of <math>u</math> produced by a spike. We denote as <math>u^-, x^-</math> the corresponding variables just before the arrival of the spike, and <math>u^+</math> refers to the moment just after the spike. From the first equation, <math>u^+ = u^- + U(1-u^-)</math>. The synaptic current generated at the synapse by the spike arriving at <math>t_{sp}</math> is then given by
 
where <math>t_{sp}</math> denotes the spike time and <math>U</math> is the increment of <math>u</math> produced by a spike. We denote as <math>u^-, x^-</math> the corresponding variables just before the arrival of the spike, and <math>u^+</math> refers to the moment just after the spike. From the first equation, <math>u^+ = u^- + U(1-u^-)</math>. The synaptic current generated at the synapse by the spike arriving at <math>t_{sp}</math> is then given by
 +
 +
其中 [math]\displaystyle{ t_{sp} }[/math] 表示尖峰时间, [math]\displaystyle{ U }[/math] 是 [math]\displaystyle{ u }[/math] 产生的增量 通过一个尖峰。 我们将尖峰到来之前的对应变量表示为 [math]\displaystyle{ u^-, x^- }[/math],而 [math]\displaystyle{ u^+ }[/math] 指的是 就在秒杀之后的那一刻。 根据第一个方程,[math]\displaystyle{ u^+ = u^- + U(1-u^-) }[/math]。 然后由到达 [math]\displaystyle{ t_{sp} }[/math] 的尖峰在突触处产生的突触电流由下式给出
    
:<math>\Delta I(t_{sp}) = Au^+x^-,
 
:<math>\Delta I(t_{sp}) = Au^+x^-,
第29行: 第35行:     
where <math>A</math> denotes the response amplitude that would be produced by total release of all the neurotransmitter (<math>u=x=1</math>), called absolute synaptic efficacy of the connections (see Fig. 1A).
 
where <math>A</math> denotes the response amplitude that would be produced by total release of all the neurotransmitter (<math>u=x=1</math>), called absolute synaptic efficacy of the connections (see Fig. 1A).
 +
 +
其中 [math]\displaystyle{ A }[/math] 表示所有神经递质 ([math]\displaystyle{ u=x=1 }[/math]) 总释放所产生的反应幅度,称为绝对突触 连接的功效(见图1A)。
    
The interplay between the dynamics of <math>u</math> and <math>x</math> determines whether the joint effect of <math>ux</math> is dominated by depression or facilitation. In the parameter regime of <math>\tau_d\gg \tau_f</math> and large <math>U</math>, an initial spike incurs a large drop in <math>x</math> that takes a long time to recover; therefore the synapse is STD-dominated (Fig.1B). In the regime of <math>\tau_f \gg \tau_d</math> and small <math>U</math>, the synaptic efficacy is increased gradually by spikes, and consequently the synapse is STF-dominated (Fig.1C). This phenomenological model successfully reproduces the kinetic dynamics of depressed and facilitated synapses observed in many cortical areas.
 
The interplay between the dynamics of <math>u</math> and <math>x</math> determines whether the joint effect of <math>ux</math> is dominated by depression or facilitation. In the parameter regime of <math>\tau_d\gg \tau_f</math> and large <math>U</math>, an initial spike incurs a large drop in <math>x</math> that takes a long time to recover; therefore the synapse is STD-dominated (Fig.1B). In the regime of <math>\tau_f \gg \tau_d</math> and small <math>U</math>, the synaptic efficacy is increased gradually by spikes, and consequently the synapse is STF-dominated (Fig.1C). This phenomenological model successfully reproduces the kinetic dynamics of depressed and facilitated synapses observed in many cortical areas.
 +
 +
[math]\displaystyle{ u }[/math] 和 [math]\displaystyle{ x }[/math] 的动力学相互作用决定了 [math]\displaystyle{ ux }[/math] 的联合效应是否为 以抑郁或便利为主。 在 [math]\displaystyle{ \tau_d\gg \tau_f }[/math] 和大 [math]\displaystyle{ U }[/math] 的参数机制中,初始尖峰会导致 [math]\displaystyle 大幅下降 { x }[/math] 需要很长时间才能恢复; 因此突触以 STD 为主(图 1B)。 在 [math]\displaystyle{ \tau_f \gg \tau_d }[/math] 和 small [math]\displaystyle{ U }[/math] 的情况下,突触的功效随着尖峰逐渐增加,因此突触是 STF 为主(图 1C)。 这种现象学模型成功地再现了在许多皮层区域观察到的抑制和促进突触的动力学动力学。
    
[[Image:Fig1A_short_term_plasticity.png|400px|链接=Special:FilePath/Fig1A_short_term_plasticity.png]]
 
[[Image:Fig1A_short_term_plasticity.png|400px|链接=Special:FilePath/Fig1A_short_term_plasticity.png]]
第37行: 第47行:  
Figure 1. (A) The phenomenological model for STP given by Eqs.\ref{model} and \ref{current}. (B) The post-synaptic current generated by an STD-dominated synapse. The neuronal firing rate <math>R=15</math>Hz. The parameters <math>A=1</math>, <math>U=0.45</math>, <math>\tau_s=20</math>ms, <math>\tau_d=750</math>ms, and <math>\tau_f=50</math>ms. (C) The dynamics of a STF-dominating synapse. The parameters <math>U=0.15</math>, <math>\tau_f=750</math>ms, and <math>\tau_d=50</math>ms.
 
Figure 1. (A) The phenomenological model for STP given by Eqs.\ref{model} and \ref{current}. (B) The post-synaptic current generated by an STD-dominated synapse. The neuronal firing rate <math>R=15</math>Hz. The parameters <math>A=1</math>, <math>U=0.45</math>, <math>\tau_s=20</math>ms, <math>\tau_d=750</math>ms, and <math>\tau_f=50</math>ms. (C) The dynamics of a STF-dominating synapse. The parameters <math>U=0.15</math>, <math>\tau_f=750</math>ms, and <math>\tau_d=50</math>ms.
   −
== Effects on information transmission==
+
图 1. (A) 由 Eqs.\ref{model} 和 \ref{current} 给出的 STP 现象学模型。 (B) 由 STD 主导的突触产生的突触后电流。 神经元放电率 [math]\displaystyle{ R=15 }[/math]Hz。 参数 [math]\displaystyle{ A=1 }[/math], [math]\displaystyle{ U=0.45 }[/math], [math]\displaystyle{ \tau_s=20 }[/math]ms, [ math]\displaystyle{ \tau_d=750 }[/math]ms 和 [math]\displaystyle{ \tau_f=50 }[/math]ms。 (C) STF 主导突触的动力学。 参数 [math]\displaystyle{ U=0.15 }[/math]、[math]\displaystyle{ \tau_f=750 }[/math]ms 和 [math]\displaystyle{ \tau_d=50 }[/math] 小姐。
 +
 
 +
== 对信息传输的影响Effects on information transmission==
    
Because STP modifies synaptic efficacy based on the history of presynaptic activity, it can alter neural information transmission ([[#Abbott97|Abbott 97]], [[#Tsodyks97|Tsodyks 97]], [[#Fuhrmann02|Fuhrmann 02]], [[#Rotman11|Rotman 11]], [[#Rosenbaum12|Rosenbaum 12]]). In general, an STD-dominated synapse favors information transfer for low firing rates, since high-frequency spikes rapidly deactivate the synapse. An STF-dominated synapse, however, tends to optimize information transfer for high-frequency bursts, which increase the synaptic strength.  
 
Because STP modifies synaptic efficacy based on the history of presynaptic activity, it can alter neural information transmission ([[#Abbott97|Abbott 97]], [[#Tsodyks97|Tsodyks 97]], [[#Fuhrmann02|Fuhrmann 02]], [[#Rotman11|Rotman 11]], [[#Rosenbaum12|Rosenbaum 12]]). In general, an STD-dominated synapse favors information transfer for low firing rates, since high-frequency spikes rapidly deactivate the synapse. An STF-dominated synapse, however, tends to optimize information transfer for high-frequency bursts, which increase the synaptic strength.  
 +
 +
因为 STP 根据突触前活动的历史来修改突触功效,所以它可以改变神经信息传递(Abbott 97、Tsodyks 97、Fuhrmann 02、Rotman 11、Rosenbaum 12)。 一般来说,以 STD 为主的突触有利于低发射率的信息传递,因为高频尖峰会迅速使突触失活。 然而,以 STF 为主的突触倾向于优化高频突发的信息传递,从而增加突触强度。
    
Firing-rate-dependent transmission via dynamic synapses can be analyzed by examining the transmission of uncorrelated Poisson spike trains from a large neuronal population with global firing rate <math>R(t)</math>. The time evolution for the postsynaptic current <math>I(t)</math> can be obtained by averaging Eq. \ref{model} over different realization of Poisson processes corresponding to different spike trains ([[#Tsodyks98|Tsodyks 98]]):
 
Firing-rate-dependent transmission via dynamic synapses can be analyzed by examining the transmission of uncorrelated Poisson spike trains from a large neuronal population with global firing rate <math>R(t)</math>. The time evolution for the postsynaptic current <math>I(t)</math> can be obtained by averaging Eq. \ref{model} over different realization of Poisson processes corresponding to different spike trains ([[#Tsodyks98|Tsodyks 98]]):
 +
 +
可以通过检查来自具有全局放电率 [math]\displaystyle{ R(t) }[/math] 的大型神经元群体的不相关 Poisson 尖峰序列的传输来分析通过动态突触的放电率依赖性传输。 突触后电流 [math]\displaystyle{ I(t) }[/math] 的时间演化可以通过对等式求平均来获得。 \ref{model} 对应于不同尖峰序列的泊松过程的不同实现(Tsodyks 98):
    
:<math>\begin{aligned}
 
:<math>\begin{aligned}
第50行: 第66行:     
where again <math>u^+ = u^- + U(1-u^-)</math> and we neglect time scales on the order of the synaptic time constant. For the stationary rate, <math>R(t) \equiv R_0</math>, we obtain
 
where again <math>u^+ = u^- + U(1-u^-)</math> and we neglect time scales on the order of the synaptic time constant. For the stationary rate, <math>R(t) \equiv R_0</math>, we obtain
 +
 +
其中 [math]\displaystyle{ u^+ = u^- + U(1-u^-) }[/math] 我们忽略了突触时间常数阶的时间尺度。 对于固定速率,[math]\displaystyle{ R(t) \equiv R_0 }[/math],我们得到
    
:<math>\begin{aligned}
 
:<math>\begin{aligned}
第57行: 第75行:     
which is shown in Fig. 2A,B. In particular, for depression-dominated synapses (<math>u^+ \approx U</math>), the average synaptic efficacy <math>E=Au^+x</math> decays inversely with the rate, and the stationary synaptic current saturates at the limiting frequency <math>\lambda \sim \frac{1}{U\tau_d}</math>, above which dynamic synapses cannot transmit information about the stationary firing rate (Fig. 2A). On the other hand, facilitating synapses can be tuned for a particular presynaptic rate that depends on STP parameters (Fig. 2B).
 
which is shown in Fig. 2A,B. In particular, for depression-dominated synapses (<math>u^+ \approx U</math>), the average synaptic efficacy <math>E=Au^+x</math> decays inversely with the rate, and the stationary synaptic current saturates at the limiting frequency <math>\lambda \sim \frac{1}{U\tau_d}</math>, above which dynamic synapses cannot transmit information about the stationary firing rate (Fig. 2A). On the other hand, facilitating synapses can be tuned for a particular presynaptic rate that depends on STP parameters (Fig. 2B).
 +
 +
如图 2A、B 所示。 特别是,对于抑郁为主的突触 ([math]\displaystyle{ u^+ \approx U }[/math]),平均突触效能 [math]\displaystyle{ E=Au^+x }[/math] 衰减 与速率成反比,静态突触电流在极限频率 [math]\displaystyle{ \lambda \sim \frac{1}{U\tau_d} }[/math] 处饱和,高于该频率的动态突触不能传输有关 固定发射率(图 2A)。 另一方面,促进突触可以针对取决于 STP 参数的特定突触前速率进行调整(图 2B)。
    
===Temporal filtering===
 
===Temporal filtering===
    
The above analysis only describes neural population firing with stationary firing rates. Eq. \ref{poisson} can be used to derive the filtering properties of dynamic synapses when the presynaptic population firing rate changes arbitrarily with time. In [[#Appendix A: Derivation of a temporal filter for short-term depression|Appendix A]] we present the corresponding calculation for depression-dominated synapses (<math>u^+ \approx U</math>). By considering small perturbations $R(t):=R_0 + R_1 \rho (t)$ with $R_1\ll R_0$ around the constant rate $R_0>0 $, the Fourier transform of the synaptic current $I$ is approximated by
 
The above analysis only describes neural population firing with stationary firing rates. Eq. \ref{poisson} can be used to derive the filtering properties of dynamic synapses when the presynaptic population firing rate changes arbitrarily with time. In [[#Appendix A: Derivation of a temporal filter for short-term depression|Appendix A]] we present the corresponding calculation for depression-dominated synapses (<math>u^+ \approx U</math>). By considering small perturbations $R(t):=R_0 + R_1 \rho (t)$ with $R_1\ll R_0$ around the constant rate $R_0>0 $, the Fourier transform of the synaptic current $I$ is approximated by
 +
 +
'''时间过滤'''
 +
 +
上述分析仅描述了具有固定放电率的神经群体放电。 方程。 当突触前群体放电率随时间任意变化时,\ref{poisson} 可用于推导动态突触的过滤特性。 在附录 A 中,我们给出了抑郁支配突触的相应计算 ([math]\displaystyle{ u^+ \approx U }[/math])。 通过考虑小扰动 $R(t):=R_0 + R_1 \rho (t)$ 和 $R_1\ll R_0$ 在恒定速率 $R_0>0 $ 附近,突触电流 $I$ 的傅里叶变换近似为
    
<math>
 
<math>
第70行: 第94行:  
where we defined the filter
 
where we defined the filter
 
<math>
 
<math>
 +
\begin{eqnarray}
 +
\widehat{\chi}(\omega) := 1- \frac{1/x_0 -1}{1/x_0 + j\omega \tau_{d}} = \frac{1+(\tau_{d}\omega)^2x_0+j\omega\tau_{d}(1-x_0)}{1/x_0+(\tau_{d}\omega)^2 x_0}\,,
 +
\label{eq:chihat}
 +
\end{eqnarray}
 +
</math>
 +
 +
<math>
 +
\begin{eqnarray}
 +
\widehat{I}(\omega) \approx I_0 \delta(\omega) + \frac{I_0 R_1}{R_0}  \widehat{\chi}(\omega) \widehat{\rho}(\omega)
 +
\label{eq:Ihat_final}
 +
\end{eqnarray}
 +
</math>其中我们定义了过滤器<math>
 
\begin{eqnarray}
 
\begin{eqnarray}
 
\widehat{\chi}(\omega) := 1- \frac{1/x_0 -1}{1/x_0 + j\omega \tau_{d}} = \frac{1+(\tau_{d}\omega)^2x_0+j\omega\tau_{d}(1-x_0)}{1/x_0+(\tau_{d}\omega)^2 x_0}\,,
 
\widehat{\chi}(\omega) := 1- \frac{1/x_0 -1}{1/x_0 + j\omega \tau_{d}} = \frac{1+(\tau_{d}\omega)^2x_0+j\omega\tau_{d}(1-x_0)}{1/x_0+(\tau_{d}\omega)^2 x_0}\,,
104

个编辑