打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
NIS
(查看源代码)
2024年8月11日 (日) 16:47的版本
大小无更改
、
2024年8月11日 (星期日)
→宏观动力学
第95行:
第95行:
{{NumBlk|:|<blockquote><math>\frac{d\mathbf{y}}{dt} = \hat{f}_{\phi_q}(\mathbf{y}, ξ')</math></blockquote>|{{EquationRef|2}}}}
{{NumBlk|:|<blockquote><math>\frac{d\mathbf{y}}{dt} = \hat{f}_{\phi_q}(\mathbf{y}, ξ')</math></blockquote>|{{EquationRef|2}}}}
−
其中<math>\mathbf{y} ∈ \mathcal{R}^q</math>为宏观态, <math>ξ' ∈ \mathcal{R}^q</math> 是宏观状态动力学中的噪声,<math>\hat{f}_{\phi_q}</math> 是连续可微函数,可最小化方程{{EquationNote|2}}在任何给定的时间步长 <math>t ∈ [1,T]</math>
和给定的向量形式
<math>\Vert \cdot \Vert</math> 下的解:
+
其中<math>\mathbf{y} ∈ \mathcal{R}^q</math>为宏观态, <math>ξ' ∈ \mathcal{R}^q</math> 是宏观状态动力学中的噪声,<math>\hat{f}_{\phi_q}</math> 是连续可微函数,可最小化方程{{EquationNote|2}}在任何给定的时间步长 <math>t ∈ [1,T]</math>
和给定的向量范数
<math>\Vert \cdot \Vert</math> 下的解:
{{NumBlk|:|<math>\mathbf{y}(t)</math> :<blockquote><math>\langle \Vert \mathbf{y}_t-\mathbf{y}(t)\Vert \rangle_{ξ'}</math></blockquote>|{{EquationRef|3}}}}
{{NumBlk|:|<math>\mathbf{y}(t)</math> :<blockquote><math>\langle \Vert \mathbf{y}_t-\mathbf{y}(t)\Vert \rangle_{ξ'}</math></blockquote>|{{EquationRef|3}}}}
−
此公式不能排除一些平凡解。例如,假设对于
<math>∀ \mathbf{y}_t ∈ \mathcal{R}^p</math> , <math>q = 1</math> 维的 <math>\phi_q</math> 定义为 <math>\phi_q(\mathbf{x}_t) = 1</math> 。因此,相应的宏观动力学只是 <math>d\mathbf{y}/dt = 0</math> 和 <math>\mathbf{y}(0) = 1</math>。由于宏观状态动力学是平凡的,粗粒化映射过于随意,此方程无意义。因此,必须对粗粒化策略和宏观动力学设置限制以避免平凡解和动力学。
+
此框架不能排除一些平凡解。例如,假设对于
<math>∀ \mathbf{y}_t ∈ \mathcal{R}^p</math> , <math>q = 1</math> 维的 <math>\phi_q</math> 定义为 <math>\phi_q(\mathbf{x}_t) = 1</math> 。因此,相应的宏观动力学只是 <math>d\mathbf{y}/dt = 0</math> 和 <math>\mathbf{y}(0) = 1</math>。由于宏观状态动力学是平凡的,粗粒化映射过于随意,此方程无意义。因此,必须对粗粒化策略和宏观动力学设置限制以避免平凡解和动力学。
===有效粗粒化策略和宏观动力学===
===有效粗粒化策略和宏观动力学===
Jake
786
个编辑