更改

无编辑摘要
第321行: 第321行:  
图2(a-i)分别显示了从具有相同节点机制的相同布尔网络模型生成的用于因果涌现和模糊因果涌现的TPM的两个示例。图2(d)中的TPM直接源自图2(a)和(b)中的布尔网络及其节点机制。它们的奇异值谱分别如图2(e)和(h)所示。(d)中的第一个例子只有4个非零奇异值(图2(e)),因此,出现明显的因果涌现,且因果涌现的程度为<math>
 
图2(a-i)分别显示了从具有相同节点机制的相同布尔网络模型生成的用于因果涌现和模糊因果涌现的TPM的两个示例。图2(d)中的TPM直接源自图2(a)和(b)中的布尔网络及其节点机制。它们的奇异值谱分别如图2(e)和(h)所示。(d)中的第一个例子只有4个非零奇异值(图2(e)),因此,出现明显的因果涌现,且因果涌现的程度为<math>
 
\Delta\Gamma=0.75
 
\Delta\Gamma=0.75
</math>。 因果涌现的判断与参考文献[5]相同。
+
</math>。 因果涌现的判断与参考文献<ref name="Hoel2013" />相同。
    
图2(g)中的TPM可以显示出模糊的因果涌现,这是在(d)中的TPM上添加强度为(std = 0.03)的随机高斯噪声后得到的。因此,奇异频谱如图2(h) 所示。我们选择<math>
 
图2(g)中的TPM可以显示出模糊的因果涌现,这是在(d)中的TPM上添加强度为(std = 0.03)的随机高斯噪声后得到的。因此,奇异频谱如图2(h) 所示。我们选择<math>
第331行: 第331行:  
</math>值是根据图2(h)中的奇异值频谱选择的,在图2(h)中可以观察到指数为3和<math>
 
</math>值是根据图2(h)中的奇异值频谱选择的,在图2(h)中可以观察到指数为3和<math>
 
\epsilon=0.2
 
\epsilon=0.2
</math>时有一个明显的分界点。图3(a-f)显示了另一个更复杂的布尔网络模型的明显因果涌现例子,该模型来自参考文献<ref name=Hoel2013 />,其中具有相同节点机制的6个节点可归类为3个超级节点,以显示因果涌现。原始布尔网络模型的相应TPM如图3(c)所示。奇异值频谱如图3(d)所示,其中有8个非零值。这个清晰因果涌现的度数为 ∆Γ = 2.23。对因果涌现的判断与<ref name="Hoel2013" />相同。参考文献<ref name="Hoel2013" />和<ref name="Hoel2017" />中有关布尔网络的更多例子可参阅附录第 E.1 节。
+
</math>时有一个明显的分界点。图3(a-f)显示了另一个更复杂的布尔网络模型的明显因果涌现例子,该模型来自参考文献<ref name="Hoel2013" />,其中具有相同节点机制的6个节点可归类为3个超级节点,以显示因果涌现。原始布尔网络模型的相应TPM如图3(c)所示。奇异值频谱如图3(d)所示,其中有8个非零值。这个清晰因果涌现的度数为<math>
 +
\Delta\Gamma=2.23
 +
</math>。对因果涌现的判断与<ref name="Hoel2013" />相同。参考文献<ref name="Hoel2013" />和<ref name="Hoel2017" />中有关布尔网络的更多例子可参阅附录第 E.1 节。
 
[[文件:截屏2024-08-14 11.13.54.png|居中|缩略图|776x776px|图3|替代=]]
 
[[文件:截屏2024-08-14 11.13.54.png|居中|缩略图|776x776px|图3|替代=]]
  
140

个编辑