打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
NIS
(查看源代码)
2024年8月31日 (六) 22:02的版本
删除14字节
、
2024年8月31日 (星期六)
→合成
第163行:
第163行:
这样,编码器<math>(\phi)</math>将微观状态<math>\mathbf{x}_t</math>映射到宏观状态<math>\mathbf{y}_t</math>,分为两个步骤:
这样,编码器<math>(\phi)</math>将微观状态<math>\mathbf{x}_t</math>映射到宏观状态<math>\mathbf{y}_t</math>,分为两个步骤:
−
{{NumBlk|:|<blockquote><math>\phi_q=\chi_q \circ \
psi_\alpha
</math></blockquote>|{{EquationNote|8}}}}
+
{{NumBlk|:|<blockquote><math>\phi_q=\chi_q \circ \
psi
</math></blockquote>|{{EquationNote|8}}}}
其中<math>\circ</math>表示函数复合运算。
其中<math>\circ</math>表示函数复合运算。
−
第一步是从<math>\mathbf{x}_t \in \mathcal{R}^p</math> 到 <math>\mathbf{x}'_t \in \mathcal{R}^p</math>的双射(可逆)映射<math>\
psi_\alpha
: \mathcal{R}^p \rightarrow \mathcal{R}^p</math>,等价于向量在高维空间中的旋转,只改变向量与坐标轴的角度,不改变模长,无信息丢失,该过程可以由可逆神经网络实现;第二步是通过将<math>\mathbf{x}_t \in \mathcal{R}^p</math>映射到<math>\mathbf{y}_t \in \mathcal{R}^q</math>,丢弃<math>p-q</math>维上的信息,将得到的向量投影到<math>q</math>维。
+
第一步是从<math>\mathbf{x}_t \in \mathcal{R}^p</math> 到 <math>\mathbf{x}'_t \in \mathcal{R}^p</math>的双射(可逆)映射<math>\
psi
: \mathcal{R}^p \rightarrow \mathcal{R}^p</math>,等价于向量在高维空间中的旋转,只改变向量与坐标轴的角度,不改变模长,无信息丢失,该过程可以由可逆神经网络实现;第二步是通过将<math>\mathbf{x}_t \in \mathcal{R}^p</math>映射到<math>\mathbf{y}_t \in \mathcal{R}^q</math>,丢弃<math>p-q</math>维上的信息,将得到的向量投影到<math>q</math>维。
==动力学学习器==
==动力学学习器==
Jake
786
个编辑