打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
马尔科夫链的粗粒化
(查看源代码)
2024年9月1日 (日) 14:38的版本
添加19字节
、
2024年9月1日 (星期日)
无编辑摘要
第1行:
第1行:
我们先简单回顾一下马尔科夫矩阵是什么。它是一种square matrix,行列数一样,且满足每一行和为1的条件。
我们先简单回顾一下马尔科夫矩阵是什么。它是一种square matrix,行列数一样,且满足每一行和为1的条件。
−
而马尔科夫链指的是一个n维的状态的序列<math>
\{
x_t\ = 1, ..., n\}_{t}</math>,每一步的状态转换都有马尔科夫矩阵<math>P</math>决定,即<math>x_{t+1} = P x_t</math>.
+
而马尔科夫链指的是一个n维的状态的序列<math>x_t\ =
\{
1, ..., n\}_{t}</math>,每一步的状态转换都有马尔科夫矩阵<math>P</math>决定,即<math>x_{t+1} = P x_t</math>.
<math>P</math>的每一行对应的每个状态转移到其他状态的概率。比如当<math>x_t</math>等于第一个状态的时候,<math>P</math>的第一行展示了<math>x_{t+1}</math>状态的概率。
<math>P</math>的每一行对应的每个状态转移到其他状态的概率。比如当<math>x_t</math>等于第一个状态的时候,<math>P</math>的第一行展示了<math>x_{t+1}</math>状态的概率。
第72行:
第72行:
由此公式我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几种partition的时候,该矩阵就会lumpable,如图一中的<math>\bar{P}</math>所示。
由此公式我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几种partition的时候,该矩阵就会lumpable,如图一中的<math>\bar{P}</math>所示。
−
但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图一中的<math>P</math>,<math>P = P_1 + P_2
,
P_1^TP_2 = 0</math>)。
+
但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图一中的<math>P</math>,<math>P = P_1 + P_2
</math>,<math>
P_1^TP_2 = 0</math>)。
−
===
针对Lumpability的粗粒化方法
===
+
===
=基于Lumpability的粗粒化方法=
===
我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。
我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。
第119行:
第119行:
=因果态=
=因果态=
−
因果态相关详情请参照[[
因果态
]]词条。
+
因果态相关详情请参照[[
计算力学
]]词条。
Liangjh
97
个编辑