在微观网络<math>G </math>与宏观网络<math>G_M </math>上[[随机游走]],在未来某个时间<math>t </math> , <math>G </math>上的预期分布为 <math>P_m(t) </math>, <math>G_M </math>上的预期分布为 <math>P_M(t) </math>。将<math>P_m(t) </math>分布叠加到宏观上<math>G_M </math>的相同节点上,得到<math>P_{M|m}(t) </math>分布。用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致。公式为: | 在微观网络<math>G </math>与宏观网络<math>G_M </math>上[[随机游走]],在未来某个时间<math>t </math> , <math>G </math>上的预期分布为 <math>P_m(t) </math>, <math>G_M </math>上的预期分布为 <math>P_M(t) </math>。将<math>P_m(t) </math>分布叠加到宏观上<math>G_M </math>的相同节点上,得到<math>P_{M|m}(t) </math>分布。用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致。公式为: |