打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
奇异值分解(SVD)
(查看源代码)
2024年11月17日 (日) 13:07的版本
添加43字节
、
周日13:07
→可分离模型
第249行:
第249行:
===可分离模型===
===可分离模型===
−
我们可以将SVD视为把矩阵分解成加权、有序的可分离矩阵之和。所谓可分离,指的是矩阵 <math>\mathbf{A}</math> 可以表示为两个向量的[[外积]](outer
product)
<math>\mathbf{A} = \mathbf{u} \otimes \mathbf{v}</math>,用坐标表示即 <math>A_{ij} = u_i v_j</math>。具体来说,矩阵 <math>\mathbf{M}</math> 的分解如下:
+
我们可以将SVD视为把矩阵分解成加权、有序的可分离矩阵之和。所谓可分离,指的是矩阵 <math>\mathbf{A}</math> 可以表示为两个向量的[[外积]](outer
product 两个向量的反对称积,生成矩阵)
<math>\mathbf{A} = \mathbf{u} \otimes \mathbf{v}</math>,用坐标表示即 <math>A_{ij} = u_i v_j</math>。具体来说,矩阵 <math>\mathbf{M}</math> 的分解如下:
<math>\mathbf{M} = \sum_i \mathbf{A}_i = \sum_i \sigma_i \mathbf{U}_i \otimes \mathbf{V}_i</math>
<math>\mathbf{M} = \sum_i \mathbf{A}_i = \sum_i \sigma_i \mathbf{U}_i \otimes \mathbf{V}_i</math>
相信未来
2,435
个编辑