协同学

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
Xebec讨论 | 贡献2020年6月24日 (三) 23:58的版本 →‎参见
跳到导航 跳到搜索

协同学简介

协同学Synergetics(希腊语: "working together"),是一门跨学科的科学,以远离热力学平衡态开放系统斑图及结构的自组织及其形成为研究对象。由赫尔曼 · 哈肯受激光理论的启发而创立。哈肯将激光原理解释为非平衡系统的自我组织,为协同学在20世纪60年代末的发展铺平了道路。他最成功的畅销书之一是《自然的成功》 ,英文译名为《结构科学: 协同学》。


该学科处理的基本问题是:是否有一般的自组织原则,而与系统各个部分的性质无关?尽管各个部分的种类繁多,可能是原子,分子,神经元(神经细胞),甚至是社会中的个体,从宏观尺度上的质变过程来看,对该问题的回答是偏肯定的。在此,“宏观尺度”是指与元素的时空尺度相比较大的时空尺度。 “一起工作”可能发生在系统的各个部分之间,系统之间甚至科学学科之间。

协同学的基本概念

序参量:子系统介入协同运动程度的测度。

主方程:大量无规律事件所遵从的必然规律。

绝热消去原理:用于求解序参量的增长规律。

涨落:每个涨落都含有宏观结构的“胚芽状态”,得到大多数子系统响应便发展为推动系统进入新有序状态的巨涨落。

自组织:许多非线性相互作用的子系统构成的“宏观”系统是自组织的前提条件。自组织基于外参量(环境、能量通量)而发生。序参量以自组织状态维持。

序参量概念

序参量的概念是协同学的核心。这个概念最初是在Ginzburg-Landau理论中为了描述热力学中相变而引入的。哈肯将序参量概念概括为“奴役原理”,即快速释放(稳定)模态的动力学完全被由少数“序参量”(不稳定模态)构成的“慢”动力学所决定。可以把序参量理解为决定宏观斑图的不稳定模态振幅。


因此,自我组织意味着系统自由度(物理和化学)(熵)的显著减少,宏观上表现为“秩序”(斑图形成)的增加。这种广泛的宏观秩序独立于子系统之间微观相互作用细节。这可能解释了物理、化学和生物学方面许多不同系统中斑图的自组织现象。

协同学的一般原理

实验或理论上的系统是参数控制主体,参数可以是外参量也可以是内参量。例如输入气体激光器的电流是外参量,人体中的激素或打那种的神经递质是内参量。


当控制参量达到临界值,系统会变得不稳定并适应新的宏观状态。在临界点附近可识别出一组新的群体变量:序参量。一般而论这些序参量符合低维动力学并塑造了系统的宏观性质。根据“奴役原理”,仍受波动影响的子系统的行为也由序参量决定。其来源可以是内部的也可以是外部的。子系统的协作产生序参量,序参量又反动决定子系统行为,即循环因果。在临界点,单个序参量可能会经历对非平衡相变(请参阅分岔),伴随有对称破却、临界慢化和临街涨落。


协同学与其他学科有许多联系,例如复杂性理论(至少目前而言,是其最贯穿的部分),动力学系统理论,分叉理论,中心流形理论,混沌理论,巨灾理论,随机过程,包括非线性Langevin方程,Fokker-Planck方程,主方程。与混沌理论和突变理论的联系主要在于序参量的概念机奴役原理。据此而言,即使是复杂系统,其动力学也只受少数变量控制。

协同学的数学框架

变量选择

在多数情况下,例如激光物理学,非线性量子光学,等离子物理学,变量是电场和磁场强度以及原子量,例如偶极矩和原子能级的占据数。通常情况下,当许多原子或分子集中到一个体积元素中,且该体积元素足够大到可以使用平均方法,同时又足够小到可以适当覆盖住本地各部分的时空变化时,可以使用介观方法。这样的局部平均值(例如人口密度或物质密度,局部通量等)可以在大多数领域中用作变量。还可以将诸如受试者经历的疼痛量之类的估计量用作变量。

运动方程

系统的动力学由所考虑参量的演化方程来描述,例如相关参量的时间变化由系统的当前状态决定。通常这些方程是随机的、非线性的,包含Îto或Stratonovich类型波动的偏微分或积分微分方程。它们通常源于系统与外部储层的耦合消除或内部变量消除。因此,例如通入系统的通量或能量耗散等系统与外界的耦合项也可纳入考虑。

解法

初始条件和边界条件演化方程的一般解是不可能的,但以下技术在协同学整个领域都非常有效:对于给定的参量或一组参量,我们假设吸引子的解是已知的,它可以是不动点吸引子,极限环吸引子,换面吸引子或混沌吸引子。

解的稳定性以线性稳定理论来检验。根据谱理论,线性稳定性问题的解本质上是指数性的。呈指数增加或中性的解描述了“不稳定模式”。它们的振幅、相位(按非线性处理时也考虑涨落)成为序参量。运动方程变为由这些新变量、振幅或相位决定的序参量,且仍是稳定模式。之后计入涨落,阻尼(稳定)模式(奴役原理)被消除。所得到的序参量方程一般是低维的,系朗之万方程类型但是非线性的,可以转换成福克-普朗克方程。

协同学的众多应用

物理学:在激光,非线性光学,半导体,流体力学,等离子体,地球物理学,气象学,天体物理学中形成时空模式

化学:宏观时空模式的形成,例如Belousov-Zhabotinsky反应

生物学:进化和发展的模型,生物分子的进化(本征-舒斯特理论),形态发生(例如Gierer-Meinhardt模型),动植物的生长,运动科学(四肢之间的协调和运动模式之间的过渡),四足步态过渡

医学:脑活动,心跳,血液循环

认知科学:例如模式识别,电机控制,协调状态之间的切换(例如Haken-Kelso-Bunz模型)

计算机:自组织,协同计算机,吸引网络

心理学:包括心理物理学,心理疗法(通过物质或非物质干预改变控制参数来间接控制人类行为)

社会学:群体动态,控制人类行为的序参数的集体形成,包括舆论的形成等

经济:例如熊彼特周期,公司之间的竞争,协同效应

生态:物种之间的竞争,气候影响,森林发展等

哲学:自我组织的概念,强者与弱者的出现

认识论:从托马斯·库恩的角度建立范式

控制原理:通过控制参数间接控制

电网理论:活动模式,稳定性

语言理论:意义的起源

信息论:信息的压缩和膨胀,自组织过程中信息的变化

管理理论:间接控制流程,企业形象,“社会风气”等作为订单参数

神经科学:与感觉运动功能的相变有关的大脑活动模式,不稳定性和转换

参见

参考资料

模板:引用列表


  • H. Haken: "Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology", 3rd rev. enl. ed. New York: Springer-Verlag, 1983.


  • H. Haken: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. New York: Springer-Verlag, 1993.