更改

跳到导航 跳到搜索
第11行: 第11行:  
动力系统理论和'''[[混沌理论]](Chaos Theory)'''都是用来处理动力系统的长期定性行为的理论。一般而言,很难对动力系统方程进行精确求解,但是对这两个理论的研究重点不在于找到精确解,而是为了解答类似于如下的问题,如“系统长期来看是否会稳定下来,如果可以,那么可能的稳定状态是什么样的?”,或“系统长期的行为是否取决于其初始条件?”等。
 
动力系统理论和'''[[混沌理论]](Chaos Theory)'''都是用来处理动力系统的长期定性行为的理论。一般而言,很难对动力系统方程进行精确求解,但是对这两个理论的研究重点不在于找到精确解,而是为了解答类似于如下的问题,如“系统长期来看是否会稳定下来,如果可以,那么可能的稳定状态是什么样的?”,或“系统长期的行为是否取决于其初始条件?”等。
   −
对给定动力系统的研究的一个重要方向就是求动力系统的不动点或'''稳态 Steady States'''。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
+
对给定动力系统的研究的一个重要方向就是求动力系统的不动点或'''稳态'''。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
    
动力系统的'''[[周期点]](Periodic Points)'''也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。
 
动力系统的'''[[周期点]](Periodic Points)'''也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。
421

个编辑

导航菜单