| The earliest known life-forms on Earth are putative fossilized microorganisms, found in hydrothermal vent precipitates, that may have lived as early as 4.28 Gya (billion years ago), relatively soon after the oceans formed 4.41 Gya, and not long after the formation of the Earth 4.54 Gya. | | The earliest known life-forms on Earth are putative fossilized microorganisms, found in hydrothermal vent precipitates, that may have lived as early as 4.28 Gya (billion years ago), relatively soon after the oceans formed 4.41 Gya, and not long after the formation of the Earth 4.54 Gya. |
− | In [[evolutionary biology]], '''abiogenesis''', or informally the '''origin of life''' (OoL),<ref>{{cite book| last1 = Oparin| first1 = Aleksandr Ivanovich| author-link1 = Alexander Oparin| translator1-last = Morgulis| translator1-first = Sergius| year = 1938| title = The Origin of Life| url = https://books.google.com/books?id=Jv8psJCtI0gC| series = Phoenix Edition Series| edition = 2| location = Mineola, New York| publisher = Courier Corporation| publication-date = 2003| isbn = 978-0486495224| access-date = 2018-06-16}}</ref><ref name=Pereto /><ref name="AST-20151218">Compare: {{cite journal |author= Scharf, Caleb |title= A Strategy for Origins of Life Research |date= 18 December 2015 |journal= [[Astrobiology (journal)|Astrobiology]] |volume= 15 |issue= 12 |pages= 1031–1042 |doi= 10.1089/ast.2015.1113 |display-authors= etal |pmid= 26684503 |pmc= 4683543|bibcode= 2015AsBio..15.1031S | quote = What do we mean by the origins of life (OoL)? [...] Since the early 20th century the phrase OoL has been used to refer to the events that occurred during the transition from non-living to living systems on Earth, i.e., the origin of terrestrial biology (Oparin, 1924; Haldane, 1929). The term has largely replaced earlier concepts such as abiogenesis (Kamminga, 1980; Fry, 2000).}}</ref>{{efn|Also occasionally called biopoiesis (Bernal, 1960, p. 30)}} is the [[natural]] process by which [[life]] has arisen from non-living matter, such as simple [[organic compound]]s.<ref name=Oparin>{{harvnb|Oparin|1953|p=vi}}</ref><ref name=Pereto>{{cite journal|last= Peretó |first= Juli |year= 2005 |title= Controversies on the origin of life |url= http://www.im.microbios.org/0801/0801023.pdf |journal= [[International Microbiology]] |volume= 8 |issue= 1 |pages= 23–31 |pmid= 15906258 |accessdate= 2015-06-01 |url-status= dead |archiveurl= https://web.archive.org/web/20150824074726/http://www.im.microbios.org/0801/0801023.pdf |archivedate= 24 August 2015 |quote = Ever since the historical contributions by Aleksandr I. Oparin, in the 1920s, the intellectual challenge of the origin of life enigma has unfolded based on the assumption that life originated on Earth through physicochemical processes that can be supposed, comprehended, and simulated; that is, there were neither miracles nor spontaneous generations.}}</ref><ref>{{cite journal |last1= Warmflash |first1= David |last2= Warmflash |first2= Benjamin |date= November 2005 |title= Did Life Come from Another World? |journal= [[Scientific American]] |volume= 293 |issue= 5 |pages= 64–71 |doi= 10.1038/scientificamerican1105-64|pmid= 16318028 |bibcode= 2005SciAm.293e..64W | quote = According to the conventional hypothesis, the earliest living cells emerged as a result of chemical evolution on our planet billions of years ago in a process called abiogenesis.}}</ref><ref>{{harvnb|Yarus|2010|p=47}}</ref> While the details of this process are still unknown, the prevailing scientific hypothesis is that the transition from non-living to living entities was not a single event, but an evolutionary process of increasing complexity that involved molecular [[self-replication]], [[self-assembly]], [[autocatalysis]], and the emergence of [[cell membrane]]s.<ref>{{cite journal|url=http://www.biocommunication.at/pdf/publications/biosystems_2016.pdf |title=Crucial steps to life: From chemical reactions to code using agents|journal=Biosystems|volume=140|pages=49–57|doi=10.1016/j.biosystems.2015.12.007|pmid=26723230|year=2016|last1=Witzany|first1=Guenther}}</ref><ref name="AB-20141208">{{cite web |last= Howell |first= Elizabeth |title= How Did Life Become Complex, And Could It Happen Beyond Earth? |url= https://www.astrobio.net/origin-and-evolution-of-life/life-become-complex-happen-beyond-earth/ |date= 8 December 2014 |work= [[Astrobiology Magazine]] |accessdate= 14 February 2018 }}</ref><ref name="EA-20150420">{{Cite book |last= Tirard |first= Stephane |title= Abiogenesis – Definition|date= 20 April 2015 |doi= 10.1007/978-3-642-27833-4_2-4 |journal= Encyclopedia of Astrobiology|pages= 1 | quote = Thomas Huxley (1825–1895) used the term abiogenesis in an important text published in 1870. He strictly made the difference between spontaneous generation, which he did not accept, and the possibility of the evolution of matter from inert to living, without any influence of life. [...] Since the end of the nineteenth century, evolutive abiogenesis means increasing complexity and evolution of matter from inert to living state in the abiotic context of evolution of primitive Earth. | + | In [[evolutionary biology]], '''abiogenesis''', or informally the '''origin of life''' (OoL),<ref>{{cite book| last1 = Oparin| first1 = Aleksandr Ivanovich| author-link1 = Alexander Oparin| translator1-last = Morgulis| translator1-first = Sergius| year = 1938| title = The Origin of Life| url = https://books.google.com/books?id=Jv8psJCtI0gC| series = Phoenix Edition Series| edition = 2| location = Mineola, New York| publisher = Courier Corporation| publication-date = 2003| isbn = 978-0486495224| access-date = 2018-06-16}}</ref><ref name=Pereto /><ref name="AST-20151218">Compare: {{cite journal |author= Scharf, Caleb |title= A Strategy for Origins of Life Research |date= 18 December 2015 |journal= [[Astrobiology (journal)|Astrobiology]] |volume= 15 |issue= 12 |pages= 1031–1042 |doi= 10.1089/ast.2015.1113 |display-authors= etal |pmid= 26684503 |pmc= 4683543|bibcode= 2015AsBio..15.1031S | quote = What do we mean by the origins of life (OoL)? [...] Since the early 20th century the phrase OoL has been used to refer to the events that occurred during the transition from non-living to living systems on Earth, i.e., the origin of terrestrial biology (Oparin, 1924; Haldane, 1929). The term has largely replaced earlier concepts such as abiogenesis (Kamminga, 1980; Fry, 2000).}}</ref>{{efn|Also occasionally called biopoiesis (Bernal, 1960, p. 30)}} is the [[natural]] process by which [[life]] has arisen from non-living matter, such as simple [[organic compound]]s.<ref name=Oparin>{{harvnb|Oparin|1953|p=vi}}</ref><ref name=Pereto>{{cite journal|last= Peretó |first= Juli |year= 2005 |title= Controversies on the origin of life |url= http://www.im.microbios.org/0801/0801023.pdf |journal= [[International Microbiology]] |volume= 8 |issue= 1 |pages= 23–31 |pmid= 15906258 |accessdate= 2015-06-01 |url-status= dead |archiveurl= https://web.archive.org/web/20150824074726/http://www.im.microbios.org/0801/0801023.pdf |archivedate= 24 August 2015 |quote = Ever since the historical contributions by Aleksandr I. Oparin, in the 1920s, the intellectual challenge of the origin of life enigma has unfolded based on the assumption that life originated on Earth through physicochemical processes that can be supposed, comprehended, and simulated; that is, there were neither miracles nor spontaneous generations.}}</ref><ref>{{cite journal |last1= Warmflash |first1= David |last2= Warmflash |first2= Benjamin |date= November 2005 |title= Did Life Come from Another World? |journal= [[Scientific American]] |volume= 293 |issue= 5 |pages= 64–71 |doi= 10.1038/scientificamerican1105-64|pmid= 16318028 |bibcode= 2005SciAm.293e..64W | quote = According to the conventional hypothesis, the earliest living cells emerged as a result of chemical evolution on our planet billions of years ago in a process called abiogenesis.}}</ref><ref>{{harvnb|Yarus|2010|p=47}}</ref> While the details of this process are still unknown, the prevailing scientific hypothesis is that the transition from non-living to living entities was not a single event, but an evolutionary process of increasing complexity that involved molecular [[self-replication]], [[self-assembly]], [[autocatalysis]], and the emergence of [[cell membrane]]s.<ref>{{cite journal|url=http://www.biocommunication.at/pdf/publications/biosystems_2016.pdf |title=Crucial steps to life: From chemical reactions to code using agents|journal=Biosystems|volume=140|pages=49–57|doi=10.1016/j.biosystems.2015.12.007|pmid=26723230|year=2016|last1=Witzany|first1=Guenther}}</ref><ref name="AB-20141208">{{cite web |last= Howell |first= Elizabeth |title= How Did Life Become Complex, And Could It Happen Beyond Earth? |url= https://www.astrobio.net/origin-and-evolution-of-life/life-become-complex-happen-beyond-earth/ |date= 8 December 2014 |work= [[Astrobiology Magazine]] |accessdate= 14 February 2018 }}</ref><ref name="EA-20150420">{{Cite book |last= Tirard |first= Stephane |title= Abiogenesis – Definition|date= 20 April 2015 |doi= 10.1007/978-3-642-27833-4_2-4 |journal= Encyclopedia of Astrobiology|pages= 1 | quote = Thomas Huxley (1825–1895) used the term abiogenesis in an important text published in 1870. He strictly made the difference between spontaneous generation, which he did not accept, and the possibility of the evolution of matter from inert to living, without any influence of life. [...] Since the end of the nineteenth century, evolutive abiogenesis means increasing complexity and evolution of matter from inert to living state in the abiotic context of evolution of primitive Earth. |isbn= 978-3-642-27833-4 }}</ref> Although the occurrence of abiogenesis is uncontroversial among scientists, its possible mechanisms are poorly understood. There are several principles and hypotheses for {{em|how}} abiogenesis could have occurred.<ref>{{Cite book |title=Rethinking evolution: the revolution that's hiding in plain sight |last=Levinson |first=Gene |publisher=World Scientific |year=2020 |isbn=978-1786347268 |url=https://rethinkingevolution.com/}}</ref> |
− | In evolutionary biology, abiogenesis, or informally the origin of life (OoL), is the natural process by which life has arisen from non-living matter, such as simple organic compounds. While the details of this process are still unknown, the prevailing scientific hypothesis is that the transition from non-living to living entities was not a single event, but an evolutionary process of increasing complexity that involved molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. Although the occurrence of abiogenesis is uncontroversial among scientists, its possible mechanisms are poorly understood. There are several principles and hypotheses for abiogenesis could have occurred. | + | In evolutionary biology, abiogenesis, or informally the origin of life (OoL), is the natural process by which life has arisen from non-living matter, such as simple organic compounds. While the details of this process are still unknown, the prevailing scientific hypothesis is that the transition from non-living to living entities was not a single event, but an evolutionary process of increasing complexity that involved molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. Although the occurrence of abiogenesis is uncontroversial among scientists, its possible mechanisms are poorly understood. There are several principles and hypotheses for abiogenesis could have occurred. |