第83行: |
第83行: |
| | | |
| 在没有自发对称性破缺的情况下,基本粒子相互作用的标准模型要求大量粒子的存在。而一些粒子(W玻色子和Z玻色子)会被预测为无质量的,但实际上它们被观察到有质量。为了克服这个问题,希格斯机制增强了自发对称破缺,从而赋予这些粒子质量。它还表明一种新粒子——希格斯玻色子——的存在,它在2012年被实验探测到。 | | 在没有自发对称性破缺的情况下,基本粒子相互作用的标准模型要求大量粒子的存在。而一些粒子(W玻色子和Z玻色子)会被预测为无质量的,但实际上它们被观察到有质量。为了克服这个问题,希格斯机制增强了自发对称破缺,从而赋予这些粒子质量。它还表明一种新粒子——希格斯玻色子——的存在,它在2012年被实验探测到。 |
− |
| |
− | [[Superconductivity]] of metals is a condensed-matter analog of the Higgs phenomena, in which a condensate of Cooper pairs of electrons spontaneously breaks the U(1) gauge symmetry associated with light and electromagnetism.
| |
| | | |
| 金属的超导性是一种类似于希格斯现象的凝聚态物质,其中库珀电子对的凝聚会自发地打破与光和电磁相关的U(1)规范对称性。 | | 金属的超导性是一种类似于希格斯现象的凝聚态物质,其中库珀电子对的凝聚会自发地打破与光和电磁相关的U(1)规范对称性。 |
| | | |
| ===凝聚态物理=== | | ===凝聚态物理=== |
− | Most phases of matter can be understood through the lens of spontaneous symmetry breaking. For example, crystals are periodic arrays of atoms that are not invariant under all translations (only under a small subset of translations by a lattice vector). Magnets have north and south poles that are oriented in a specific direction, breaking [[rotational symmetry]]. In addition to these examples, there are a whole host of other symmetry-breaking phases of matter — including nematic phases of liquid crystals, charge- and spin-density waves, superfluids, and many others.
| |
| | | |
| 物质的大多数相态都可以通过自发对称性破缺的透镜来理解。例如,晶体是原子的周期性排列,它并非在所有平移下(仅在晶格向量平移的一个小子集下)都是不变的。磁体有朝向特定方向的南极和北极,打破了旋转对称。除了这些例子,还有一大堆其他的物质对称性破缺相——包括液晶的向列相、电荷和自旋密度波、超流体等等。 | | 物质的大多数相态都可以通过自发对称性破缺的透镜来理解。例如,晶体是原子的周期性排列,它并非在所有平移下(仅在晶格向量平移的一个小子集下)都是不变的。磁体有朝向特定方向的南极和北极,打破了旋转对称。除了这些例子,还有一大堆其他的物质对称性破缺相——包括液晶的向列相、电荷和自旋密度波、超流体等等。 |
第96行: |
第93行: |
| | | |
| ====连续对称性==== | | ====连续对称性==== |
− | The ferromagnet is the canonical system that spontaneously breaks the continuous symmetry of the spins below the [[Curie temperature]] and at {{nowrap|1=''h'' = 0}}, where ''h'' is the external magnetic field. Below the [[Curie temperature]], the energy of the system is invariant under inversion of the magnetization ''m''('''x''') such that {{nowrap|1=''m''('''x''') = −''m''(−'''x''')}}. The symmetry is spontaneously broken as {{nowrap|''h'' → 0}} when the Hamiltonian becomes invariant under the inversion transformation, but the expectation value is not invariant.
| |
| | | |
| 铁磁体是正则系统,它在居里温度以下和h = 0(其中h为外部磁场)的情况下自发打破自旋的连续对称性。在居里温度以下,系统的能量在磁化强度m(x)的反转下(使m(x) =−m(−x))不变。当哈密顿量在反转变换下不变,而期望值不是恒定时,对称性在h→0时自发破坏。 | | 铁磁体是正则系统,它在居里温度以下和h = 0(其中h为外部磁场)的情况下自发打破自旋的连续对称性。在居里温度以下,系统的能量在磁化强度m(x)的反转下(使m(x) =−m(−x))不变。当哈密顿量在反转变换下不变,而期望值不是恒定时,对称性在h→0时自发破坏。 |
| | | |
− | Spontaneously-symmetry-broken phases of matter are characterized by an order parameter that describes the quantity which breaks the symmetry under consideration. For example, in a magnet, the order parameter is the local magnetization.
| |
| | | |
| 物质的自发对称性破缺相由一个序参量表征,它描述了打破所考虑的对称性的量。例如,在磁铁中,序参量是局部磁化强度。 | | 物质的自发对称性破缺相由一个序参量表征,它描述了打破所考虑的对称性的量。例如,在磁铁中,序参量是局部磁化强度。 |
− |
| |
− | Spontaneous breaking of a continuous symmetry is inevitably accompanied by gapless (meaning that these modes do not cost any energy to excite) Nambu–Goldstone modes associated with slow, long-wavelength fluctuations of the order parameter. For example, vibrational modes in a crystal, known as phonons, are associated with slow density fluctuations of the crystal's atoms. The associated Goldstone mode for magnets are oscillating waves of spin known as spin-waves. For symmetry-breaking states, whose order parameter is not a conserved quantity, Nambu–Goldstone modes are typically massless and propagate at a constant velocity.
| |
| | | |
| 连续对称的自发破缺不可避免地伴随着无间隙(意味着这些模式不需要花费任何能量来激发) [[Nambu–Goldstone boson|Nambu–Goldstone]] 模式,它与序参量的缓慢、长波长波动有关。例如,晶体中的振动模式声子,与晶体原子的缓慢密度涨落有关。磁铁相关的 [[Nambu–Goldstone boson|Goldstone]] 模式是自旋振荡波,称为自旋波。对于序参量不是守恒量的对称性破缺态,Nambu-Goldstone模通常是无质量的,并以恒定速度传播。 | | 连续对称的自发破缺不可避免地伴随着无间隙(意味着这些模式不需要花费任何能量来激发) [[Nambu–Goldstone boson|Nambu–Goldstone]] 模式,它与序参量的缓慢、长波长波动有关。例如,晶体中的振动模式声子,与晶体原子的缓慢密度涨落有关。磁铁相关的 [[Nambu–Goldstone boson|Goldstone]] 模式是自旋振荡波,称为自旋波。对于序参量不是守恒量的对称性破缺态,Nambu-Goldstone模通常是无质量的,并以恒定速度传播。 |
| | | |
− | An important theorem, due to Mermin and Wagner, states that, at finite temperature, thermally activated fluctuations of Nambu–Goldstone modes destroy the long-range order, and prevent spontaneous symmetry breaking in one- and two-dimensional systems. Similarly, quantum fluctuations of the order parameter prevent most types of continuous symmetry breaking in one-dimensional systems even at zero temperature. (An important exception is ferromagnets, whose order parameter, magnetization, is an exactly conserved quantity and does not have any quantum fluctuations.)
| |
| | | |
| 由Mermin和Wagner提出的一个重要定理指出,在有限温度下, [[Nambu–Goldstone boson|Nambu–Goldstone]] 模式热激活的扰动破坏了长程有序,并阻止了一维和二维系统中对称性的自发破缺。类似地,即使是在零温度下,序参量的量子涨落阻止了一维系统中大多数类型的连续对称破缺。(一个重要的例外是铁磁体,其序参量磁化强度是一个精确的守恒量,不存在任何量子涨落。) | | 由Mermin和Wagner提出的一个重要定理指出,在有限温度下, [[Nambu–Goldstone boson|Nambu–Goldstone]] 模式热激活的扰动破坏了长程有序,并阻止了一维和二维系统中对称性的自发破缺。类似地,即使是在零温度下,序参量的量子涨落阻止了一维系统中大多数类型的连续对称破缺。(一个重要的例外是铁磁体,其序参量磁化强度是一个精确的守恒量,不存在任何量子涨落。) |
第128行: |
第120行: |
| | | |
| ===动力学对称性破缺=== | | ===动力学对称性破缺=== |
− | Dynamical symmetry breaking (DSB) is a special form of spontaneous symmetry breaking in which the ground state of the system has reduced symmetry properties compared to its theoretical description (i.e., [[Lagrangian (field theory)|Lagrangian]]).
| |
− |
| |
− | 动力学对称性破缺(DSB)是自发对称性破缺的一种特殊形式,在这种情况下,系统的基态相对理论描述(例如拉格朗日量)的对称性降低。
| |
| | | |
− | Dynamical breaking of a global symmetry is a spontaneous symmetry breaking, which happens not at the (classical) tree level (i.e., at the level of the bare action), but due to quantum corrections (i.e., at the level of the [[effective action]]).
| + | [[动力学]]对称性破缺(DSB)是自发对称性破缺的一种特殊形式,在这种情况下,系统的基态相对理论描述(例如拉格朗日量)的对称性降低。 |
| | | |
| 全局对称性的动力学破缺是自发对称性破缺,它不是发生在(经典)树的水平(例如在bare作用的水平),而是由于量子修正(例如在有效作用的水平)。 | | 全局对称性的动力学破缺是自发对称性破缺,它不是发生在(经典)树的水平(例如在bare作用的水平),而是由于量子修正(例如在有效作用的水平)。 |
第154行: |
第143行: |
| | | |
| ==广义描述和技术运用== | | ==广义描述和技术运用== |
− | For spontaneous symmetry breaking to occur, there must be a system in which there are several equally likely outcomes. The system as a whole is therefore [[Symmetry (physics)|symmetric]] with respect to these outcomes. However, if the system is sampled (i.e. if the system is actually used or interacted with in any way), a specific outcome must occur. Though the system as a whole is symmetric, it is never encountered with this symmetry, but only in one specific asymmetric state. Hence, the symmetry is said to be spontaneously broken in that theory. Nevertheless, the fact that each outcome is equally likely is a reflection of the underlying symmetry, which is thus often dubbed "hidden symmetry", and has crucial formal consequences. (See the article on the [[Nambu–Goldstone boson|Goldstone boson]].)
| |
− |
| |
− | 要发生自发对称性破缺,系统中必须有几个等可能的结果,整个系统相对于这些结果是对称的。然而,如果对系统进行采样(即如果系统被实际使用或以任何方式与之交互),就必须产生特定的结果。虽然系统作为一个整体是对称的,但它从来没有表现出这种对称性,而只是处于一个特定的不对称状态。于是,在该理论中对称性被自发地打破了。然而,每个结果的可能性都相等这一点,反映了潜在的对称性。因此通常被称为“隐藏对称性”,并具有重要的形式结果。(参见有关 [[Nambu–Goldstone boson|Goldstone]]玻色子的文章。)
| |
| | | |
− | When a theory is symmetric with respect to a [[symmetry group]], but requires that one element of the group be distinct, then spontaneous symmetry breaking has occurred. The theory must not dictate ''which'' member is distinct, only that ''one is''. From this point on, the theory can be treated as if this element actually is distinct, with the proviso that any results found in this way must be resymmetrized, by taking the average of each of the elements of the group being the distinct one.
| + | 要发生自发对称性破缺,系统中必须有几个等可能的结果,整个系统相对于这些结果是对称的。然而,如果对系统进行采样(即如果系统被实际使用或以任何方式与之交互),就必须产生特定的结果。虽然系统作为一个整体是对称的,但它从来没有表现出这种对称性,而只是处于一个特定的不对称状态。于是,在该理论中对称性被自发地打破了。然而,每个结果的可能性都相等这一点,反映了潜在的对称性。因此通常被称为“隐藏对称性”,并具有重要的形式结果。(参见有关Goldstone玻色子的文章。) |
| | | |
− | 当一个理论相对于一个对称群是对称的,但要求群中的一个元素是不同的,那么就会发生自发对称性破缺。该理论不能规定''哪个''成员是不同的,而只能规定''那个''成员是不同的。从这一点开始,这个理论就可以被视为这个元素实际上是不同的,附带的条件是,任何以这种方式发现的结果必须是重新对称的,通过取组中每个元素的平均值作为不同的元素。
| |
| | | |
− | The crucial concept in physics theories is the [[order parameter]]. If there is a field (often a background field) which acquires an expectation value (not necessarily a [[vacuum expectation value|''vacuum'' expectation value]]) which is not invariant under the symmetry in question, we say that the system is in the [[ordered phase]], and the symmetry is spontaneously broken. This is because other subsystems interact with the order parameter, which specifies a "frame of reference" to be measured against. In that case, the [[vacuum state]] does not obey the initial symmetry (which would keep it invariant, in the linearly realized '''Wigner mode''' in which it would be a singlet), and, instead changes under the (hidden) symmetry, now implemented in the (nonlinear) '''Nambu–Goldstone mode'''. Normally, in the absence of the Higgs mechanism, massless [[Goldstone boson]]s arise.
| + | 当一个理论相对于一个[[对称群]]是对称的,但要求群中的一个元素是不同的,那么就会发生自发对称性破缺。该理论不能规定''哪个''成员是不同的,而只能规定''那个''成员是不同的。从这一点开始,这个理论就可以被视为这个元素实际上是不同的,附带的条件是,任何以这种方式发现的结果必须是重新对称的,通过取组中每个元素的平均值作为不同的元素。 |
| | | |
− | 在物理理论中,最重要的概念是序参量。如果有一个场(通常是背景场)得到一个期望值(不一定是真空期望值),这个期望值在理论具有的对称性下不是不变的,我们就说系统处于有序相,对称性自发破缺。这是因为序参量指定了测量其他子系统与之相互作用的“参考框架”。在这种情况下,真空状态不服从初始对称性(这将保持它不变,在线性实现的Wigner模式中,它将是一个单线),而是在(隐藏的)对称下变化,现在在(非线性)'''Nambu–Goldstone'''模式中实现。通常,在没有希格斯机制的情况下,就会出现无质量的戈德斯通玻色子。
| + | 在物理理论中,最重要的概念是[[序参量]]。如果有一个场(通常是背景场)得到一个期望值(不一定是真空期望值),这个期望值在理论具有的对称性下不是不变的,我们就说系统处于有序相,对称性自发破缺。这是因为序参量指定了测量其他子系统与之相互作用的“参考框架”。在这种情况下,真空状态不服从初始对称性(这将保持它不变,在线性实现的Wigner模式中,它将是一个单线),而是在(隐藏的)对称下变化,现在在(非线性)'''Nambu–Goldstone'''模式中实现。通常,在没有希格斯机制的情况下,就会出现无质量的戈德斯通玻色子。 |
− | | |
− | The symmetry group can be discrete, such as the [[space group]] of a crystal, or continuous (e.g., a [[Lie group]]), such as the rotational symmetry of space. However, if the system contains only a single spatial dimension, then only discrete symmetries may be broken in a [[vacuum state]] of the full [[Quantum mechanics|quantum theory]], although a classical solution may break a continuous symmetry.
| |
| | | |
| 对称群可以是离散的,如晶体的空间群,也可以是连续的(如李群),如空间的旋转对称。然而,如果系统只包含一个空间维度,尽管经典解可能打破连续对称性,那么在全量子理论的真空状态下,只有离散的对称性可能被打破。 | | 对称群可以是离散的,如晶体的空间群,也可以是连续的(如李群),如空间的旋转对称。然而,如果系统只包含一个空间维度,尽管经典解可能打破连续对称性,那么在全量子理论的真空状态下,只有离散的对称性可能被打破。 |
第176行: |
第159行: |
| ==参见== | | ==参见== |
| {{div col|colwidth=24em}} | | {{div col|colwidth=24em}} |
− | * [[Autocatalytic reactions and order creation]]
| |
− | * [[Catastrophe theory]]
| |
− | * [[Chiral symmetry breaking]]
| |
− | * [[CP-violation]]
| |
− | * [[Fermi ball]]
| |
− | * [[Gauge gravitation theory]]
| |
− | * [[Goldstone boson]]
| |
− | * [[Grand unified theory]]
| |
− | * [[Higgs mechanism]]
| |
− | * [[Higgs boson]]
| |
− | * [[Higgs field (classical)]]
| |
− | * [[Irreversibility]]
| |
− | * [[Magnetic catalysis]] of chiral symmetry breaking
| |
− | * [[Mermin–Wagner theorem]]
| |
− | * [[Norton's dome]]
| |
− | * [[Second-order phase transition]]
| |
− | * [[Spontaneous absolute asymmetric synthesis]] in chemistry
| |
− | * [[Symmetry breaking]]
| |
− | * [[Tachyon condensation]]
| |
− | * [[1964 PRL symmetry breaking papers]]
| |
| {{div col end}}参见 | | {{div col end}}参见 |
| | | |
第257行: |
第220行: |
| | | |
| | | |
− |
| |
− | {{DEFAULTSORT:Symmetry Breaking}}
| |
− |
| |
− | 范畴: 对称
| |
− |
| |
− | 类别: 模式形成
| |
− |
| |
− | 本中文词条由XXX编译,XXX审校,XXX总审校,西瓜编辑,欢迎在讨论页面留言。
| |
− |
| |
− | '''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''
| |
− |
| |
− | <noinclude>
| |
− |
| |
− | [[Category:对称性破缺]]
| |
| | | |
| | | |