第226行: |
第226行: |
| | | |
| 我们假设 <math>R</math>中的这种小扰动会在变量<math>x</math>中围绕其稳态值<math>x_0>0</math>产生小的扰动: | | 我们假设 <math>R</math>中的这种小扰动会在变量<math>x</math>中围绕其稳态值<math>x_0>0</math>产生小的扰动: |
| + | |
| <math> | | <math> |
| x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . | | x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . |
第244行: |
第245行: |
| </math> | | </math> |
| | | |
− | where in Eq. \ref{eq:appA_rx} we dropped the second-order term $x_1 R_1\rho$ because we assumed $R_1\ll R_0$ and $|x_1|\ll x_0$. Plugging Eq. \ref{eq:appA_rx} into Eq. \ref{eq:appA_x} yields | + | where in Eq. (11)we dropped the second-order term <math>x_1 R_1\rho</math> because we assumed<math>R_1\ll R_0</math>and<math>|x_1|\ll x_0</math>. Plugging Eq. (11) into Eq. (7) yields |
| + | |
| + | 在等式(11)中,我们删除了二阶项 <math>x_1 R_1\rho</math>,因为,我们假设<math>R_1\ll R_0</math>和 <math>|x_1|\ll x_0</math>,将等式(11)插入等式(7)产生, |
| | | |
| <math> | | <math> |
第252行: |
第255行: |
| </math> | | </math> |
| | | |
− | 在方程式中的位置。 \ref{eq:appA_rx} 我们删除了二阶项 $x_1 R_1\rho$,因为我们假设 $R_1\ll R_0$ 和 $|x_1|\ll x_0$。堵塞方程式。 \ref{eq:appA_rx} 转化为等式。 \ref{eq:appA_x} 产生
| + | We now take the Fourier transform at both sides of Eq. (12) |
| + | |
| + | 我们现在对等式两边进行傅里叶变换。 |
| | | |
− | [数学]\displaystyle{ \begin{eqnarray} {\frac<nowiki>{{\rm d} x}{{\rm d}t}} = \frac{1-x}{\tau_{d}}</nowiki> - U R_0 x - U x_0 R + U x_0 R_0\,.\label{eq:appA_xlin} \end{eqnarray} }[/math]
| |
− | We now take the Fourier transform at both sides of Eq. \ref{eq:appA_xlin}
| |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第262行: |
第265行: |
| \end{eqnarray} | | \end{eqnarray} |
| </math> | | </math> |
| + | |
| where we defined the Fourier transform pair | | where we defined the Fourier transform pair |
| + | |
| + | 这里我们定义了傅里叶变换对 |
| + | |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第269行: |
第276行: |
| \end{eqnarray} | | \end{eqnarray} |
| </math> | | </math> |
− | and $j=\sqrt{-1}$ is the imaginary unit. Solving Eq. \ref{eq:appA_xhat0} for the variable $\widehat{x}$, we find | + | and<math> |
| + | j=\sqrt{-1} |
| + | </math>is the imaginary unit. Solving Eq. (13) for the variable <math> |
| + | \widehat{x} |
| + | </math>, we find |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第275行: |
第286行: |
| \end{eqnarray} | | \end{eqnarray} |
| </math> | | </math> |
− | where from Eq. \ref{eq:appA_x01} we used $U R_0 \tau_{d}=1/x_0 - 1$.
| |
| | | |
− | <nowiki>我们现在对等式两边进行傅里叶变换。 \ref{eq:appA_xlin} [数学]\displaystyle{ \begin{eqnarray} j\omega \tau_{d} \widehat{x} = -\widehat{x} - U R_0 \tau_{d} \widehat{x } - U x_0 \tau_{d}\widehat{R} + (1+ U R_0 \tau_{d} x_0) \delta(\omega) \label{eq:appA_xhat0} \end{eqnarray} }[/math]我们定义了傅里叶变换对 [math]\displaystyle{ \begin{eqnarray} \widehat{x}(\omega) := \int \!{\rm d}{t}\, x(t) \exp( -j\omega t ) \quad; \quad x(t) = \frac{1}{2\pi}\int \!{\rm d}\omega\, \widehat{x}(\omega) \exp(j\omega t) \label{ eq:appA_ft} \end{eqnarray} }[/math] 和 $j=\sqrt{-1}$ 是虚数单位。求解方程。 \ref{eq:appA_xhat0} 对于变量 $\widehat{x}$,我们找到 [math]\displaystyle{ \begin{eqnarray} \widehat{x} = -\frac{U\tau_{d}x_0}{ 1/x_0 + j \omega \tau_{d}} \widehat{R} + x_0 (2-x_0) \delta(\omega) \label{eq:appA_xhat} \end{eqnarray} }[/math] 从哪里方程。 \ref{eq:appA_x01} 我们使用了 $U R_0 \tau_{d}=1/x_0 - 1$。</nowiki> | + | <math> |
| + | j=\sqrt{-1} |
| + | </math>是虚数单位。求解等式(13)的对应变量 <math> |
| + | \widehat{x} |
| + | </math>,我们得到 |
| + | |
| + | where from Eq. (10) we used <math> |
| + | U R_0 \tau_{d}=1/x_0 - 1 |
| + | </math>. |
| + | |
| + | 其中从等式(10)中,我们使用了<math> |
| + | U R_0 \tau_{d}=1/x_0 - 1 |
| + | </math>。 |
| | | |
| Next, we plug Eq. (11)into Eq. (8) to linearize the dynamics of the synaptic current | | Next, we plug Eq. (11)into Eq. (8) to linearize the dynamics of the synaptic current |
| + | |
| + | 接下来,我们方程式(11)插入方程式(8)线性化突触电流的动态性 |
| | | |
| <math> | | <math> |
第287行: |
第311行: |
| \end{eqnarray} | | \end{eqnarray} |
| </math> | | </math> |
− | around the steady-state value <math>
| |
− | I_0 = \tau_{s}AU x_0 R_0
| |
− | </math>.
| |
| | | |
− | 接下来,我们方程式(11)插入方程式(8)线性化突触电流的动态性
| + | around the steady-state value围绕静态值 |
| | | |
| <math> | | <math> |
− | \begin{eqnarray}
| |
− | I &=& \tau_{s}AU (R_0x+x_0R-x_0R_0)\\
| |
− | &=& I_0 \left( \frac{x}{x_0}+ \frac{R}{R_0}-1\right) \label{eq:appA_Ilin}
| |
− | \end{eqnarray}
| |
− | </math>
| |
− | 围绕静态值 <math>
| |
| I_0 = \tau_{s}AU x_0 R_0 | | I_0 = \tau_{s}AU x_0 R_0 |
| </math>. | | </math>. |
| | | |
| By taking the Fourier transform at both sides of Eq. (16), using Eq. (15), we obtain | | By taking the Fourier transform at both sides of Eq. (16), using Eq. (15), we obtain |
| + | |
| + | 通过对等式(16)两边进行傅里叶变换。使用等式(15),我们得到 |
| + | |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第311行: |
第329行: |
| \end{eqnarray} | | \end{eqnarray} |
| </math> | | </math> |
− | where we defined the filter | + | |
| + | where we defined the filter其中我们定义了过滤器 |
| + | |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第319行: |
第339行: |
| </math> | | </math> |
| | | |
− | 通过对等式(16)两边进行傅里叶变换。使用等式(15),我们得到 <math>
| + | To interpret the result, we plug into Eq.(17)the Fourier transform |
− | \begin{eqnarray}
| + | |
− | \widehat{I} &=& I_0 \frac{\widehat{x}}{x_0} + I_0 \frac{\widehat{R}}{R_0} - I_0 \delta(\omega) \\
| + | 为了解释结果,我们插入等式(17)傅里叶变换 |
− | &=& \frac{I_0}{R_0} \widehat{\chi} \widehat{R} + I_0(1-x_0) \delta(\omega)
| |
− | \label{eq:appA_Ihat}
| |
− | \end{eqnarray}
| |
− | </math>,其中我们定义了过滤器<math>
| |
− | \begin{eqnarray}
| |
− | \widehat{\chi}(\omega) := 1- \frac{1/x_0 -1}{1/x_0 + j\omega \tau_{d}} = \frac{1+(\tau_{d}\omega)^2x_0+j\omega\tau_{d}(1-x_0)}{1/x_0+(\tau_{d}\omega)^2 x_0}\,.
| |
− | \label{eq:appA_chihat}
| |
− | \end{eqnarray}
| |
− | </math>
| |
| | | |
− | To interpret the result, we plug into Eq.(17)the Fourier transform<math>
| + | <math> |
| \widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho} | | \widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho} |
| </math>, | | </math>, |
− | which yields
| |
| | | |
− | <math>
| + | which yields产生 |
− | \begin{eqnarray}
| |
− | \widehat{I}(\omega) = I_0 \delta(\omega) + \frac{I_0 R_1}{R_0} \widehat{\chi}(\omega) \widehat{\rho}(\omega)\,.
| |
− | \label{eq:appA_Ihat_final}
| |
− | \end{eqnarray}
| |
− | </math>
| |
− | | |
− | 为了解释结果,我们插入方程式。 (17)傅里叶变换<math>
| |
− | \widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho}
| |
− | </math>,产生
| |
| | | |
| <math> | | <math> |
第357行: |
第358行: |
| Finally, the inverse Fourier transform of Eq.(19)reads | | Finally, the inverse Fourier transform of Eq.(19)reads |
| | | |
− | 最后,等式(19)的傅里叶逆变换读取
| + | 最后,等式(19)的傅里叶逆变换为 |
| + | |
| <math> | | <math> |
| \begin{eqnarray} | | \begin{eqnarray} |
第365行: |
第367行: |
| </math> | | </math> |
| | | |
− | with
| + | with以及 |
− | | |
− | 以及
| |
| | | |
| <math> | | <math> |