更改

跳到导航 跳到搜索
添加675字节 、 2024年8月16日 (星期五)
第329行: 第329行:     
===动力学模式分解===
 
===动力学模式分解===
动态模态分解模型的基本思想是直接从数据模拟得到的流场中提取流动的动态信息,根据不同频率的流场变动寻找数据映射,基于动态非线性无穷维转化成动态线性有穷维的方式,采用了Arnoldi 方法以及奇异值分解SVD降维的思想,借鉴了ARIMA、SARIMA 以及季节模型等许多时间序列的关键特征,被广泛的使用在数学、物理、金融等领域<ref>J. Grosek and J. N. Kutz, Dynamic mode decomposition for real-time background/foreground separation in video, arXiv:1404.7592.</ref>
+
动态模态分解<ref>Schmid P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54(1): 225-254.</ref><ref>J. Proctor, S. Brunton and J. N. Kutz, Dynamic mode decomposition with control, arXiv:1409.6358</ref>模型的基本思想是直接从数据模拟得到的流场中提取流动的动态信息,根据不同频率的流场变动寻找数据映射,基于动态非线性无穷维转化成动态线性有穷维的方式,采用了Arnoldi 方法以及奇异值分解SVD降维的思想,借鉴了ARIMA、SARIMA 以及季节模型等许多时间序列的关键特征,被广泛的使用在数学、物理、金融等领域<ref>J. Grosek and J. N. Kutz, Dynamic mode decomposition for real-time background/foreground separation in video, arXiv:1404.7592.</ref>。动态模式分解按照频率对系统进行排序,提取系统特征频率,从而观察不同频率的流动结构对流场的贡献,同时动态模式分解模态特征值可以进行流场预测。因为动态模态分解算法只理论的严密性、稳定性、简易性等优点,在不断被运用的同时,动态模态分解算法也在本来的基础之上不断被完善,如与SPA检验结合起来,以验证股票价格预测对比基准点的强有效性:以及通过联系动态模态分解算法和光谱研究的方式,模拟股票市场在循环经济当中的震动,均能够有效地采集分析数据,并最终得到结果。
   −
动力学模式分解,属于利用线性变换同时对变量、动力学、观测函数进行降维<ref>B. Brunton, L. Johnson, J. Ojemann and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition arXiv:1409.5496</ref>。而除此之外,还有另一种和因果涌现中粗粒化策略相近,但是依然基于误差最小化来进行优化的操作,就是动力学模式分解。对于动力系统,如果时间是连续的,就可以表示为<math>\frac{dx}{dt}=f(x,u) </math>时间离散的情况下,系统就可以表示为<math>x_{t+1}=f(x_t,u_t) </math>一般来说,动态系统的解析解难以得到,希望通过一种不需要知道方程就能够近似这个动态系统,并对这个系统做出一定的预测,动力学模式分解(DMD)便是其中一种解决方案。通过构造局部线性化的动态系统,对于一个连续系统,<math>\frac{dx}{dt}=Ax </math>该关系的解可以通过如下表达式来构建<math>x(t)=\sum_{k=1}^n\phi_ke^{\omega_kt}b_k=\Phi e^{\Omega t}b </math>其中,<math>\phi_k(\Phi) </math>、<math>\omega_k(\Omega) </math>分别是<math>A </math>的特征向量(矩阵)和特征值(矩阵),<math>b_k(b) </math>是以相应的特征向量为基的情况下的坐标。
+
动力学模式分解,属于利用线性变换同时对变量、动力学、观测函数进行降维<ref>B. Brunton, L. Johnson, J. Ojemann and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition arXiv:1409.5496</ref>。而除此之外,还有另一种和因果涌现中粗粒化策略相近,但是依然基于误差最小化来进行优化的操作,就是动力学模式分解。模型约简和动力学模式分解虽然都和模型粗粒化十分接近,但是他们都没有基于有效信息的优化,本质上都是默认了一定会损失信息,而不会增强因果效应。后续的证明<ref><blockquote>Liu K, Yuan B, Zhang J. An Exact Theory of Causal Emergence for Linear Stochastic Iteration Systems[J]. arXiv preprint arXiv:2405.09207, 2024.</blockquote></ref>中我们知道其实有效信息最大化的最优解集包含因果涌最大化的解集,因此如果要优化因果涌现,可以先最小化误差,在最小误差的解集中寻找最佳的粗粒化策略。
   −
同样,对于一个离散系统,有<math>x_{t+1}=Ax_t </math>这个系统的解可以被表达为离散时间映射<math>A </math>的特征向量和特征值的组合<math>x_t=\sum_{k=1}^n\phi_k\lambda_k^tb_k=\Phi \Lambda^tb </math>其中,<math>b </math>是初始状态<math>x </math>在特征向量基下的坐标,即<math>x=\Phi b </math>。DMD算法就是寻找矩阵A的低阶(秩)近似,并且该近似解可以最近与原始的动态系统的轨迹,即<math>\min||x_{t+1}-Ax_t|| </math>
+
===马尔科夫链的简化===
 +
除了对向量以及高维动力学的降维之外,马尔科夫链的简化也和因果涌现有着重要的联系。马尔科夫链的简化,其实就是对复杂的马尔科夫链进行分块与重整。而分块的重要依据就是马尔科夫链是否可约<ref>Gebali F, Gebali F. Reducible Markov Chains[J]. Analysis of Computer Networks, 2015: 157-189.</ref>
   −
模型约简和动力学模式分解虽然都和模型粗粒化十分接近,但是他们都没有基于有效信息的优化,本质上都是默认了一定会损失信息,而不会增强因果效应。后续的证明<ref><blockquote>Liu K, Yuan B, Zhang J. An Exact Theory of Causal Emergence for Linear Stochastic Iteration Systems[J]. arXiv preprint arXiv:2405.09207, 2024.</blockquote></ref>中我们知道其实有效信息最大化的最优解集包含因果涌最大化的解集,因此如果要优化因果涌现,可以先最小化误差,在最小误差的解集中寻找最佳的粗粒化策略。
+
可约马尔可夫链描述的系统具有特定状态,一旦我们访问了其中一种状态,就无法访​​问其他状态。可以用可约马尔可夫链建模的系统的一个例子是机会游戏,一旦赌徒破产,游戏就会停止,游戏就此停止。另一个例子是研究一条鱼在海洋中游动的位置。鱼可以自由地游动到任何位置,这取决于水流​​、食物或捕食者的存在。一旦鱼被网住,它就无法逃脱,而且它能游动的空间也有限。但如果从任何状态开始,我们都能够直接、一步或间接地通过一个或多个中间状态到达图中的任何其他状态。这样的马尔可夫链称为不可约马尔可夫链。在可以长时间运行的系统中,我们会遇到不可约马尔可夫链,例如银行营业时间内的排队状态,排队的顾客数量一直在零到最大值之间变化。或是路由器或交换机中的缓冲区占用状态。缓冲区占用根据到达的流量模式在完全空和完全满之间变化。从任何状态开始,我们都可能无法直接或间接地到达图中的其他状态。这种马尔可夫链被称为可约马尔可夫。
 
  −
===马尔科夫链的简化===
  −
除了对向量以及高维动力学的降维之外,马尔科夫链的简化也和因果涌现有着重要的联系。比如这里[math]P[/math]为微观状态的马尔科夫概率转移矩阵,维度为:[math]N\times N[/math],这里N为微观的状态数;而[math]P'[/math]为对[math]P[/math]做粗粒化操作之后得到的宏观态的马尔科夫概率转移矩阵,维度为[math]M\times M[/math],其中[math]M<N[/math]为宏观状态数。
     −
关于如何对马尔科夫概率转移矩阵实施粗粒化的方法,往往体现为两步:1、对微观状态做归并,将N个微观态,归并为M个宏观态;2、对马尔科夫转移矩阵做约简。关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
+
对马尔科夫概率转移矩阵实施粗粒化的方法,其实就利用了马尔科夫链的可约性与不可约性。往往体现为两步:1、对微观状态做归并,将N个微观态,归并为M个宏观态;2、对马尔科夫转移矩阵做约简。关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
    
如果计算得出的CE>0,则称该系统发生了[[因果涌现]],否则没有发生。由于归一化的EI消除了系统尺寸的影响,因此因果涌现度量更大。我们也可以把因果涌现作为指标,评判马尔科夫链的简化是否最佳。
 
如果计算得出的CE>0,则称该系统发生了[[因果涌现]],否则没有发生。由于归一化的EI消除了系统尺寸的影响,因此因果涌现度量更大。我们也可以把因果涌现作为指标,评判马尔科夫链的简化是否最佳。
225

个编辑

导航菜单