更改

跳到导航 跳到搜索
无编辑摘要
第289行: 第289行:  
\Gamma_{\alpha}
 
\Gamma_{\alpha}
 
</math>不仅捕获了行向量之间的相似性,而且还捕获了P与动态可逆矩阵的接近度。相比之下,EI无法完成这个任务。
 
</math>不仅捕获了行向量之间的相似性,而且还捕获了P与动态可逆矩阵的接近度。相比之下,EI无法完成这个任务。
  −
      
可以通过以下数值实验来验证这一点:可以通过将线性相关行向量与线性独立行向量混合来创建TPM,其中独立向量的数量或等级是受控参数。首先,生成r个独立的独热向量,然后软化这些行向量,软化程度由<math>
 
可以通过以下数值实验来验证这一点:可以通过将线性相关行向量与线性独立行向量混合来创建TPM,其中独立向量的数量或等级是受控参数。首先,生成r个独立的独热向量,然后软化这些行向量,软化程度由<math>
第358行: 第356行:  
\Delta\Gamma=0.75
 
\Delta\Gamma=0.75
 
</math>。 因果涌现的判断与参考文献<ref name="Hoel2013" />相同。
 
</math>。 因果涌现的判断与参考文献<ref name="Hoel2013" />相同。
  −
      
图(g)中的TPM可以显示出模糊的因果涌现,这是在(d)中的TPM上添加强度为(std = 0.03)的随机高斯噪声后得到的。因此,奇异频谱如图(h) 所示。我们选择<math>
 
图(g)中的TPM可以显示出模糊的因果涌现,这是在(d)中的TPM上添加强度为(std = 0.03)的随机高斯噪声后得到的。因此,奇异频谱如图(h) 所示。我们选择<math>
140

个编辑

导航菜单