第1行: |
第1行: |
− | ==任务==
| |
− | 生产人:ZQ
| |
− | 下一个任务:审校
| |
| | | |
− | | + | 在[[信息论]]中,'''香农-哈特利定理'''(Shannon–Hartley theorem)给出了在存在噪声的情况下,信息可以通过给定带宽的通信信道中传输的最大速率。香农-哈特利定理是有噪声信道编码定理在连续时间模拟通信信道中受高斯噪声影响的原型情况中的一种应用。假设信号功率是有界的,且高斯噪声过程为已知功率或功率谱密度,那么在存在噪声干扰的情况下,香农-哈特利定理为这种通信链路建立了信道容量的界限,即每个时间单元能够以指定带宽传输最多无误差信息的范围。定理以[[克劳德 · 香农]]和拉尔夫 · 哈特利命名。 |
− | In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.
| |
− | | |
− | 在[[信息论]]中,'''香农-哈特利定理'''(Shannon–Hartley theorem)给出了在存在噪声的情况下信息通过给定带宽的信道中传输的最大速率。香农-哈特利定理是噪声信道编码定理中的一个应用,是一种受高斯噪声影响的连续时间模拟通信信道的典型案例。假设信号功率是有界的,且高斯噪声过程为已知功率或功率谱密度,那么在存在噪声干扰的情况下,香农-哈特利定理为这种通信链路建立了信道容量的界限,即每个时间单元能够以指定带宽传输最多无误差信息的范围。定理以[[克劳德 · 香农]]和拉尔夫 · 哈特利命名。 | |
| | | |
| ==定理内容== | | ==定理内容== |
| | | |
− | The Shannon–Hartley theorem states the channel capacity {\displaystyle C}C,meaning the theoretical tightest upper bound on the information rate of data that can be communicated at an arbitrarily low error rate using an average received signal power S through an analog communication channel subject to additive white Gaussian noise (AWGN) of power N.
| + | 香农-哈特利定理给出了信道容量<math>C</math>的计算方法,表示理论上的信道传输速率的上限可以用信号的平均接受功率<math>S</math>以任意的较低的错误率通过模拟通信信道传输,并且会受到加性高斯白噪声(AWGN)的影响<math>N</math>: |
| | | |
− | 香农-哈特利定理给出了信道容量<math>C</math>的计算方法,表示理论上的信道传输速率的上限可以用信号的平均接受功率S以任意错误率通过模拟通信信道传输,并且会受到加性高斯白噪声(AWGN)的影响:
| + | :<math> |
− | | |
− | <math> | |
| C = B\log _{2}{(1+\frac{S}{N})} | | C = B\log _{2}{(1+\frac{S}{N})} |
| </math> | | </math> |
− |
| |
− | where
| |
− |
| |
− | {\displaystyle C}C is the channel capacity in bits per second, a theoretical upper bound on the net bit rate (information rate, sometimes denoted {\displaystyle I}I) excluding error-correction codes;
| |
− | {\displaystyle B}B is the bandwidth of the channel in hertz (passband bandwidth in case of a bandpass signal);
| |
− | {\displaystyle S}S is the average received signal power over the bandwidth (in case of a carrier-modulated passband transmission, often denoted C), measured in watts (or volts squared);
| |
− | {\displaystyle N}N is the average power of the noise and interference over the bandwidth, measured in watts (or volts squared); and
| |
− | {\displaystyle S/N}S/N is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the communication signal to the noise and interference at the receiver (expressed as a linear power ratio, not as logarithmic decibels).
| |
| | | |
| 其中: | | 其中: |
| | | |
− | * <math>C</math>为信道容量,单位为比特每秒或者奈特每秒等。为理论上的最大比特率(即信息速率,也可用<math>I</math>表示),不包括纠错码。 | + | * <math>C</math>为信道容量,单位为比特每秒或者奈特每秒等。为理论上的不包含纠错码的最大比特率(即信息速率,也可用<math>I</math>表示),也就是信道无差别传输信息时的最大信息传输速率,反映了信道的传输能力。 |
| | | |
| * <math>B</math>是信道的带宽,单位为赫兹(在带通信号的情况下为通带带宽); | | * <math>B</math>是信道的带宽,单位为赫兹(在带通信号的情况下为通带带宽); |