更改

删除282字节 、 2022年7月28日 (四) 11:04
第213行: 第213行:  
</math>
 
</math>
   −
The aim is to derive a filter<math>\chi</math>that relates the output synaptic current $I$ to the input rate $R$.
+
The aim is to derive a filter<math>\chi</math>that relates the output synaptic current <math>I</math>to the input rate<math>R</math>.
Note that because the input rate $R$ enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations $R_1 \rho(t)$ of the firing rate $R(t)$ around a constant rate $R_0$, that is,
+
Note that because the input rate<math>R</math>enters the equations in a multiplicative fashion the input-output transfer function is non linear. Yet a linear filter can be derived by considering small perturbations <math>R_1 \rho(t)</math>of the firing rate <math>R(t)</math>around a constant rate <math>R_0</math>, that is,
    
<math>
 
<math>
第221行: 第221行:  
</math>
 
</math>
   −
目的是导出一个过滤器 $\chi$,它将输出突触电流 $I$ 与输入速率 $R$ 联系起来。请注意,由于输入速率 $R$ 以乘法方式进入方程,因此输入-输出传递函数是非线性的。然而,线性滤波器可以通过考虑在恒定速率 $R_0$ 附近的发射率 $R(t)$ 的小扰动 $R_1 \rho(t)$,即  
+
目的是导出一个过滤器 <math>\chi</math>,它将输出突触电流 <math>I</math>与输入速率 <math>R</math> 联系起来。请注意,由于输入速率 <math>R</math>以乘法方式进入方程,因此输入-输出传递函数是非线性的。然而,线性滤波器可以通过考虑在恒定速率 <math>R_0</math>附近的发射率<math>R(t)</math>的小扰动 <math>R_1 \rho(t)</math>,即  
    
<math>
 
<math>
第228行: 第228行:  
</math>
 
</math>
   −
We assume that such small perturbations in $R$ produce small perturbations in the variable $x$ around its steady state value $x_0>0$ :
+
We assume that such small perturbations in <math>R</math>produce small perturbations in the variable<math>x</math>around its steady state value<math>x_0>0</math>:
 
<math>
 
<math>
 
x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, .
 
x(t) = x_0 + x_1(t)\quad\text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, .
 
\label{eq:appA_x01}
 
\label{eq:appA_x01}
 
</math>
 
</math>
 +
 +
<nowiki>我们假设 $R$ 中的这种小扰动会在变量 $x$ 中围绕其稳态值 $x_0>0$ 产生小的扰动: [math]\displaystyle{ x(t) = x_0 + x_1(t)\quad\ text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . \label{eq:appA_x01} }[/math]</nowiki>
    
We can now linearize the dynamics of $x(t)$ around the steady-state value $x_0$ by approximating the product  
 
We can now linearize the dynamics of $x(t)$ around the steady-state value $x_0$ by approximating the product  
 +
 +
我们现在可以通过近似乘积将 $x(t)$ 的动态线性化为围绕稳态值 $x_0$
    
<math>
 
<math>
第253行: 第257行:  
</math>
 
</math>
    +
在方程式中的位置。 \ref{eq:appA_rx} 我们删除了二阶项 $x_1 R_1\rho$,因为我们假设 $R_1\ll R_0$ 和 $|x_1|\ll x_0$。堵塞方程式。 \ref{eq:appA_rx} 转化为等式。 \ref{eq:appA_x} 产生
    +
[数学]\displaystyle{ \begin{eqnarray} {\frac<nowiki>{{\rm d} x}{{\rm d}t}} = \frac{1-x}{\tau_{d}}</nowiki> - U R_0 x - U x_0 R + U x_0 R_0\,.\label{eq:appA_xlin} \end{eqnarray} }[/math]
 
We now take the Fourier transform at both sides of Eq. \ref{eq:appA_xlin}
 
We now take the Fourier transform at both sides of Eq. \ref{eq:appA_xlin}
 
<math>
 
<math>
第276行: 第282行:  
where from Eq. \ref{eq:appA_x01} we used $U R_0 \tau_{d}=1/x_0 - 1$.
 
where from Eq. \ref{eq:appA_x01} we used $U R_0 \tau_{d}=1/x_0 - 1$.
   −
Next, we plug Eq. \ref{eq:appA_rx} into Eq. \ref{eq:appA_I} to linearize the dynamics of the synaptic current
+
<nowiki>我们现在对等式两边进行傅里叶变换。 \ref{eq:appA_xlin} [数学]\displaystyle{ \begin{eqnarray} j\omega \tau_{d} \widehat{x} = -\widehat{x} - U R_0 \tau_{d} \widehat{x } - U x_0 \tau_{d}\widehat{R} + (1+ U R_0 \tau_{d} x_0) \delta(\omega) \label{eq:appA_xhat0} \end{eqnarray} }[/math]我们定义了傅里叶变换对 [math]\displaystyle{ \begin{eqnarray} \widehat{x}(\omega) := \int \!{\rm d}{t}\, x(t) \exp( -j\omega t ) \quad; \quad x(t) = \frac{1}{2\pi}\int \!{\rm d}\omega\, \widehat{x}(\omega) \exp(j\omega t) \label{ eq:appA_ft} \end{eqnarray} }[/math] 和 $j=\sqrt{-1}$ 是虚数单位。求解方程。 \ref{eq:appA_xhat0} 对于变量 $\widehat{x}$,我们找到 [math]\displaystyle{ \begin{eqnarray} \widehat{x} = -\frac{U\tau_{d}x_0}{ 1/x_0 + j \omega \tau_{d}} \widehat{R} + x_0 (2-x_0) \delta(\omega) \label{eq:appA_xhat} \end{eqnarray} }[/math] 从哪里方程。 \ref{eq:appA_x01} 我们使用了 $U R_0 \tau_{d}=1/x_0 - 1$。</nowiki>
 +
 
 +
Next, we plug Eq. (11)into Eq. (8) to linearize the dynamics of the synaptic current
 +
 
 +
<math>
 +
\begin{eqnarray}
 +
I &=& \tau_{s}AU (R_0x+x_0R-x_0R_0)\\
 +
  &=& I_0 \left( \frac{x}{x_0}+ \frac{R}{R_0}-1\right) \label{eq:appA_Ilin}
 +
\end{eqnarray}
 +
</math>
 +
around the steady-state value <math>
 +
I_0 = \tau_{s}AU x_0 R_0
 +
</math>.
 +
 
 +
接下来,我们方程式(11)插入方程式(8)线性化突触电流的动态性
    
<math>
 
<math>
第284行: 第304行:  
\end{eqnarray}
 
\end{eqnarray}
 
</math>
 
</math>
around the steady-state value $I_0 = \tau_{s}AU x_0 R_0$.
+
围绕静态值 <math>
 +
I_0 = \tau_{s}AU x_0 R_0
 +
</math>.
   −
By taking the Fourier transform at both sides of Eq. \ref{eq:appA_Ilin}, using Eq. \ref{eq:appA_xhat}, we obtain
+
By taking the Fourier transform at both sides of Eq. (16), using Eq. (15), we obtain
 
<math>
 
<math>
 
\begin{eqnarray}
 
\begin{eqnarray}
第302行: 第324行:  
</math>
 
</math>
   −
To interpret the result, we plug into Eq. \ref{eq:appA_Ihat} the Fourier transform $\widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho}$,  
+
通过对等式(16)两边进行傅里叶变换。使用等式(15),我们得到 <math>
 +
\begin{eqnarray}
 +
\widehat{I} &=& I_0 \frac{\widehat{x}}{x_0} + I_0 \frac{\widehat{R}}{R_0} - I_0 \delta(\omega) \\
 +
            &=& \frac{I_0}{R_0} \widehat{\chi} \widehat{R} + I_0(1-x_0) \delta(\omega)
 +
\label{eq:appA_Ihat}
 +
\end{eqnarray}
 +
</math>,其中我们定义了过滤器<math>
 +
\begin{eqnarray}
 +
\widehat{\chi}(\omega) := 1- \frac{1/x_0 -1}{1/x_0 + j\omega \tau_{d}} = \frac{1+(\tau_{d}\omega)^2x_0+j\omega\tau_{d}(1-x_0)}{1/x_0+(\tau_{d}\omega)^2 x_0}\,.
 +
\label{eq:appA_chihat}
 +
\end{eqnarray}
 +
</math>
 +
 
 +
To interpret the result, we plug into Eq.(17)the Fourier transform<math>
 +
\widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho}
 +
</math>,  
 
which yields
 
which yields
   第312行: 第349行:  
</math>
 
</math>
   −
Finally, the inverse Fourier transform of Eq. \ref{eq:appA_Ihat_final} reads
+
为了解释结果,我们插入方程式。 (17)傅里叶变换<math>
 +
\widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho}
 +
</math>,产生
 +
 
 +
<math>
 +
\begin{eqnarray}
 +
\widehat{I}(\omega) = I_0 \delta(\omega) + \frac{I_0 R_1}{R_0}  \widehat{\chi}(\omega) \widehat{\rho}(\omega)\,.
 +
\label{eq:appA_Ihat_final}
 +
\end{eqnarray}
 +
</math>
 +
 
 +
Finally, the inverse Fourier transform of Eq.(19)reads
 
<math>
 
<math>
 
\begin{eqnarray}
 
\begin{eqnarray}
第327行: 第375行:  
</math>
 
</math>
   −
<nowiki>最后,等式的傅里叶逆变换。 \ref{eq:appA_Ihat_final} 读取 [math]\displaystyle{ \begin{eqnarray} I(t) = I_0 + \frac{I_0 R_1}{R_0} \int {\rm d}\tau \, \chi(\ tau) \rho(t-\tau) \label{eq:appA_I_final} \end{eqnarray} }[/math] with [math]\displaystyle{ \begin{eqnarray} \chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \ text{for}\quad t\ge0 \\ 0 & \text{for}\quad t\lt 0 \end{cases}\,. \label{eq:appA_chi_final} \end{eqnarray} }[/math]</nowiki>
+
最后,等式(19)的傅里叶逆变换读取 <math>
 
+
\begin{eqnarray}
Therefore the output current $I$ is the sum of the steady-state current $I_0$ and the filtered perturbation $\frac{I_0 R_1}{R_0} \int {\rm d}\tau \, \chi(\tau) \rho(t-\tau)$ where $\chi$ is the filter we are interested in.
+
I(t) = I_0 + \frac{I_0 R_1}{R_0} \int {\rm d}\tau \, \chi(\tau) \rho(t-\tau)
 
+
\label{eq:appA_I_final}
因此输出电流 $I$ 是稳态电流 $I_0$ 和滤波后的扰动 $\frac{I_0 R_1}{R_0} \int {\rm d}\tau \, \chi(\tau) 之和\rho(t-\tau)$ 其中 $\chi$ 是过滤器
+
\end{eqnarray}
 
+
</math>以及<math>
<nowiki>我们假设 $R$ 中的这种小扰动会在变量 $x$ 中围绕其稳态值 $x_0>0$ 产生小的扰动: [math]\displaystyle{ x(t) = x_0 + x_1(t)\quad\ text{with}\quad x_0 = \frac{1}{1+UR_0\tau_{d}} \quad\text{and}\quad |x_1(t)| \ll x_0 \, . \label{eq:appA_x01} }[/math]</nowiki>
+
\begin{eqnarray}
 
+
\chi(t)=\delta(t) - \frac{1/x_0-1}{\tau_{d}} \begin{cases} \displaystyle {\exp\left(-\frac{t}{x_0\tau_{d}}\right)} & \text{for}\quad t\ge0 \\ 0 & \text{for}\quad t<0 \end{cases}\,.
我们现在可以通过近似乘积将 $x(t)$ 的动态线性化为围绕稳态值 $x_0$
+
\label{eq:appA_chi_final}
 
+
\end{eqnarray}
[数学]\displaystyle{ \begin{eqnarray} xR &=& (x_0+x_1)(R_0+R_1\rho)\\ &=& x_0 R_0 + x_0 R_1 \rho + x_1 R_0+ x_1 R_1\rho\\ &\大约& x_0 R_0 + x_0 R_1 \rho + x_1 R_0\\ &\approx& R_0 x+ x_0R -x_0 R_0 \label{eq:appA_rx} \end{eqnarray} }[/math]
+
</math>
 
  −
在方程式中的位置。 \ref{eq:appA_rx} 我们删除了二阶项 $x_1 R_1\rho$,因为我们假设 $R_1\ll R_0$ 和 $|x_1|\ll x_0$。堵塞方程式。 \ref{eq:appA_rx} 转化为等式。 \ref{eq:appA_x} 产生
  −
 
  −
[数学]\displaystyle{ \begin{eqnarray} {\frac<nowiki>{{\rm d} x}{{\rm d}t}} = \frac{1-x}{\tau_{d}}</nowiki> - U R_0 x - U x_0 R + U x_0 R_0\,.\label{eq:appA_xlin} \end{eqnarray} }[/math]
  −
 
  −
<nowiki>我们现在对等式两边进行傅里叶变换。 \ref{eq:appA_xlin} [数学]\displaystyle{ \begin{eqnarray} j\omega \tau_{d} \widehat{x} = -\widehat{x} - U R_0 \tau_{d} \widehat{x } - U x_0 \tau_{d}\widehat{R} + (1+ U R_0 \tau_{d} x_0) \delta(\omega) \label{eq:appA_xhat0} \end{eqnarray} }[/math]我们定义了傅里叶变换对 [math]\displaystyle{ \begin{eqnarray} \widehat{x}(\omega) := \int \!{\rm d}{t}\, x(t) \exp( -j\omega t ) \quad; \quad x(t) = \frac{1}{2\pi}\int \!{\rm d}\omega\, \widehat{x}(\omega) \exp(j\omega t) \label{ eq:appA_ft} \end{eqnarray} }[/math] 和 $j=\sqrt{-1}$ 是虚数单位。求解方程。 \ref{eq:appA_xhat0} 对于变量 $\widehat{x}$,我们找到 [math]\displaystyle{ \begin{eqnarray} \widehat{x} = -\frac{U\tau_{d}x_0}{ 1/x_0 + j \omega \tau_{d}} \widehat{R} + x_0 (2-x_0) \delta(\omega) \label{eq:appA_xhat} \end{eqnarray} }[/math] 从哪里方程。 \ref{eq:appA_x01} 我们使用了 $U R_0 \tau_{d}=1/x_0 - 1$。</nowiki>
  −
 
  −
接下来,我们插入方程式。 \ref{eq:appA_rx} 转化为等式。 \ref{eq:appA_I} 线性化突触电流的动态
  −
 
  −
[数学]\displaystyle{ \begin{eqnarray} I &=& \tau_{s}AU (R_0x+x_0R-x_0R_0)\\ &=& I_0 \left( \frac{x}{x_0}+ \frac{R }{R_0}-1\right) \label{eq:appA_Ilin} \end{eqnarray} }[/math] 围绕稳态值 $I_0 = \tau_{s}AU x_0 R_0$。
  −
 
  −
<nowiki>通过对等式两边进行傅里叶变换。 \ref{eq:appA_Ilin},使用等式。 \ref{eq:appA_xhat},我们得到 [math]\displaystyle{ \begin{eqnarray} \widehat{I} &=& I_0 \frac{\widehat{x}}{x_0} + I_0 \frac{\widehat{ R}}{R_0} - I_0 \delta(\omega) \\ &=& \frac{I_0}{R_0} \widehat{\chi} \widehat{R} + I_0(1-x_0) \delta(\omega ) \label{eq:appA_Ihat} \end{eqnarray} }[/math] 我们定义了过滤器 [math]\displaystyle{ \begin{eqnarray} \widehat{\chi}(\omega) := 1- \frac {1/x_0 -1}{1/x_0 + j\omega \tau_{d}} = \frac{1+(\tau_{d}\omega)^2x_0+j\omega\tau_{d}(1- x_0)}{1/x_0+(\tau_{d}\omega)^2 x_0}\,. \label{eq:appA_chihat} \end{eqnarray} }[/math]</nowiki>
  −
 
  −
为了解释结果,我们插入方程式。 \ref{eq:appA_Ihat} 傅里叶变换 $\widehat{R}=R_0\delta(\omega)+R_1 \widehat{\rho}$,产生
     −
[数学]\displaystyle{ \begin{eqnarray} \widehat{I}(\omega) = I_0 \delta(\omega) + \frac{I_0 R_1}{R_0} \widehat{\chi}(\omega) \widehat {\rho}(\omega)\,. \label{eq:appA_Ihat_final} \end{eqnarray} }[/math]
+
Therefore the output current <math>
 +
I
 +
</math>is the sum of the steady-state current <math>
 +
I_0
 +
</math> and the filtered perturbation <math>
 +
\frac{I_0 R_1}{R_0} \int {\rm d}\tau \, \chi(\tau) \rho(t-\tau)
 +
</math> where <math>
 +
\chi
 +
</math>is the filter we are interested in.
    +
因此,输出电流<math>
 +
I
 +
</math> 是稳态电流 <math>
 +
I_0
 +
</math>和滤波后的扰动之和,其中<math>
 +
\chi
 +
</math>是过滤器。
    
==参考文献References==
 
==参考文献References==
104

个编辑